Zernike's Feature Descriptors for Iris Recognition with SVM

Juan Reyes-Lopez, Sergio Campos, H. Allende, Rodrigo F. Salas
{"title":"Zernike's Feature Descriptors for Iris Recognition with SVM","authors":"Juan Reyes-Lopez, Sergio Campos, H. Allende, Rodrigo F. Salas","doi":"10.1109/SCCC.2011.36","DOIUrl":null,"url":null,"abstract":"Valuable information of the iris is intrinsically located in its natural texture, therefore preserve and extract the most relevant features for biometric recognition is of paramount importance. The iris pattern is subject to translation, scaling and rotation, consequently the variations produced by these artifacts must be minimized. The main contribution of this work consists on performing a comparison between the descriptive power of the Zernike and pseudo Zernike polynomials for the identification of iris images using a Support Vector Machine (SVM) as a classifier. Experiments with the iris data set obtained from the Bath University repository show that our proposal yields high levels of accuracy.","PeriodicalId":173639,"journal":{"name":"2011 30th International Conference of the Chilean Computer Science Society","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 30th International Conference of the Chilean Computer Science Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Valuable information of the iris is intrinsically located in its natural texture, therefore preserve and extract the most relevant features for biometric recognition is of paramount importance. The iris pattern is subject to translation, scaling and rotation, consequently the variations produced by these artifacts must be minimized. The main contribution of this work consists on performing a comparison between the descriptive power of the Zernike and pseudo Zernike polynomials for the identification of iris images using a Support Vector Machine (SVM) as a classifier. Experiments with the iris data set obtained from the Bath University repository show that our proposal yields high levels of accuracy.
基于支持向量机的虹膜识别Zernike特征描述符
虹膜有价值的信息本质上存在于虹膜的自然纹理中,因此保留和提取最相关的特征对生物识别至关重要。虹膜图案受到平移,缩放和旋转,因此由这些工件产生的变化必须最小化。这项工作的主要贡献在于使用支持向量机(SVM)作为分类器,对识别虹膜图像的Zernike多项式和伪Zernike多项式的描述能力进行比较。对从巴斯大学存储库获得的虹膜数据集进行的实验表明,我们的建议产生了高水平的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信