Computing 2D Periodic Centroidal Voronoi Tessellation

Dong‐Ming Yan, K. Wang, B. Lévy, Laurent Alonso
{"title":"Computing 2D Periodic Centroidal Voronoi Tessellation","authors":"Dong‐Ming Yan, K. Wang, B. Lévy, Laurent Alonso","doi":"10.1109/ISVD.2011.31","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient algorithm to compute the centroidal Voronoi tessellation in 2D periodic space. We first present a simple algorithm for constructing the periodic Voronoi diagram (PVD) from a Euclidean Voronoi diagram. The presented PVD algorithm considers only a small set of periodic copies of the input sites, which is more efficient than previous approaches requiring full copies of the sites (9 in 2D and 27 in 3D). The presented PVD algorithm is applied in a fast Newton-based framework for computing the centroidal Voronoi tessellation (CVT). We observe that full-hexagonal patterns can be obtained via periodic CVT optimization attributed to the convergence of the Newton-based CVT computation.","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In this paper, we propose an efficient algorithm to compute the centroidal Voronoi tessellation in 2D periodic space. We first present a simple algorithm for constructing the periodic Voronoi diagram (PVD) from a Euclidean Voronoi diagram. The presented PVD algorithm considers only a small set of periodic copies of the input sites, which is more efficient than previous approaches requiring full copies of the sites (9 in 2D and 27 in 3D). The presented PVD algorithm is applied in a fast Newton-based framework for computing the centroidal Voronoi tessellation (CVT). We observe that full-hexagonal patterns can be obtained via periodic CVT optimization attributed to the convergence of the Newton-based CVT computation.
二维周期质心Voronoi镶嵌计算
本文提出了一种计算二维周期空间中质心Voronoi镶嵌的有效算法。我们首先提出了一种从欧几里得Voronoi图构造周期Voronoi图(PVD)的简单算法。所提出的PVD算法只考虑输入位点的一小组周期性副本,这比之前需要完整副本的方法(9个2D和27个3D)更有效。将所提出的PVD算法应用于快速牛顿框架中计算质心Voronoi镶嵌(CVT)。我们发现,由于牛顿CVT计算的收敛性,通过周期性CVT优化可以得到全六边形图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信