BIIIG: Enabling business intelligence with integrated instance graphs

André Petermann, Martin Junghanns, R. Müller, E. Rahm
{"title":"BIIIG: Enabling business intelligence with integrated instance graphs","authors":"André Petermann, Martin Junghanns, R. Müller, E. Rahm","doi":"10.1109/ICDEW.2014.6818294","DOIUrl":null,"url":null,"abstract":"We propose a new graph-based framework for business intelligence called BIIIG supporting the flexible evaluation of relationships between data instances. It builds on the broad availability of interconnected objects in existing business information systems. Our approach extracts such interconnected data from multiple sources and integrates them into an integrated instance graph. To support specific analytic goals, we extract subgraphs from this integrated instance graph representing executed business activities with all their data traces and involved master data. We provide an overview of the BIIIG approach and describe its main steps. We also present initial results from an evaluation with real ERP data.","PeriodicalId":302600,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2014.6818294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We propose a new graph-based framework for business intelligence called BIIIG supporting the flexible evaluation of relationships between data instances. It builds on the broad availability of interconnected objects in existing business information systems. Our approach extracts such interconnected data from multiple sources and integrates them into an integrated instance graph. To support specific analytic goals, we extract subgraphs from this integrated instance graph representing executed business activities with all their data traces and involved master data. We provide an overview of the BIIIG approach and describe its main steps. We also present initial results from an evaluation with real ERP data.
BIIIG:通过集成的实例图实现商业智能
我们提出了一种新的基于图的商业智能框架,称为BIIIG,支持对数据实例之间的关系进行灵活的评估。它建立在现有业务信息系统中互联对象的广泛可用性的基础上。我们的方法是从多个来源提取这种相互关联的数据,并将它们集成到一个集成的实例图中。为了支持特定的分析目标,我们从这个集成实例图中提取子图,表示已执行的业务活动及其所有数据跟踪和涉及的主数据。我们概述了BIIIG方法并描述了其主要步骤。我们也提出了初步的结果,从评估与真实的ERP数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信