Election Forecasts with Twitter - How 140 Characters Reflect the Political Landscape

A. Tumasjan, T. Sprenger, Philipp G. Sandner, I. Welpe
{"title":"Election Forecasts with Twitter - How 140 Characters Reflect the Political Landscape","authors":"A. Tumasjan, T. Sprenger, Philipp G. Sandner, I. Welpe","doi":"10.2139/ssrn.1833192","DOIUrl":null,"url":null,"abstract":"This study investigates whether microblogging messages on Twitter validly mirror the political landscape offline and can be used to predict election results. In the context of the 2009 German federal election, we conducted a sentiment analysis of over 100,000 messages containing a reference to either a political party or a politician. Our results show that Twitter is used extensively for political deliberation and that the mere number of party mentions accurately reflects the election result. The tweets' sentiment (e.g., positive and negative emotions associated with a politician) corresponds closely to voters' political preferences. In addition, party sentiment profiles reflect the similarity of political positions between parties. We derive suggestions for further research and discuss the use of microblogging services to aggregate dispersed information.","PeriodicalId":404371,"journal":{"name":"CommRN: Public Opinion (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"206","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CommRN: Public Opinion (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1833192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 206

Abstract

This study investigates whether microblogging messages on Twitter validly mirror the political landscape offline and can be used to predict election results. In the context of the 2009 German federal election, we conducted a sentiment analysis of over 100,000 messages containing a reference to either a political party or a politician. Our results show that Twitter is used extensively for political deliberation and that the mere number of party mentions accurately reflects the election result. The tweets' sentiment (e.g., positive and negative emotions associated with a politician) corresponds closely to voters' political preferences. In addition, party sentiment profiles reflect the similarity of political positions between parties. We derive suggestions for further research and discuss the use of microblogging services to aggregate dispersed information.
用推特预测选举——140个字符如何反映政治格局
本研究探讨推特上的微博讯息是否能有效反映线下的政治格局,并可用于预测选举结果。在2009年德国联邦大选的背景下,我们对超过10万条涉及政党或政治家的信息进行了情绪分析。我们的研究结果表明,Twitter被广泛用于政治审议,仅仅提到政党的数量就能准确反映选举结果。推文的情绪(例如,与政治家相关的积极和消极情绪)与选民的政治偏好密切相关。此外,政党情绪概况反映了政党之间政治立场的相似性。我们提出了进一步研究的建议,并讨论了利用微博服务来聚合分散的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信