A. Aliverdiev, M. Caponero, C. Moriconi, P. Fichera, G. Sagratella
{"title":"Laser speckle velocimeter for a robotized vehicle","authors":"A. Aliverdiev, M. Caponero, C. Moriconi, P. Fichera, G. Sagratella","doi":"10.1117/12.795297","DOIUrl":null,"url":null,"abstract":"The paper points out the progress in the exploitation of high, fast and precise non-contact velocimetry for robot applications. A technique for the precise measurement of the speed between two sliding surfaces has been developed during the research project for the realisation of an autonomous robot. The robot is devoted to the scouting of dangerous sites and to the execution of measurements in these places for the exploration of an extreme Antarctica environment (RAS project). This technique is based on the precise calculation of the common movement of a laser speckle field. This approach allows the realisation of a velocimeter suitable for use in extreme conditions. A description of the adopted methodology and the obtained results are the main topic of our work.","PeriodicalId":300417,"journal":{"name":"Advanced Optoelectronics and Lasers","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optoelectronics and Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.795297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper points out the progress in the exploitation of high, fast and precise non-contact velocimetry for robot applications. A technique for the precise measurement of the speed between two sliding surfaces has been developed during the research project for the realisation of an autonomous robot. The robot is devoted to the scouting of dangerous sites and to the execution of measurements in these places for the exploration of an extreme Antarctica environment (RAS project). This technique is based on the precise calculation of the common movement of a laser speckle field. This approach allows the realisation of a velocimeter suitable for use in extreme conditions. A description of the adopted methodology and the obtained results are the main topic of our work.