A new approach to all pairs shortest paths in planar graphs

G. Frederickson
{"title":"A new approach to all pairs shortest paths in planar graphs","authors":"G. Frederickson","doi":"10.1145/28395.28398","DOIUrl":null,"url":null,"abstract":"An algorithm is presented for generating a succinct encoding of all pairs shortest path information in a directed planar graph G with real-valued edge costs but no negative cycles. The algorithm runs in &Ogr;(pn) time, where n is the number of vertices in G, and p is the minimum cardinality of a subset of the faces that cover all vertices, taken over all planar embeddings of G. Linear-time algorithms are presented for various subproblems including that of finding an appropriate embedding of G and a corresponding face-on-vertex covering of cardinality &Ogr;(p), and of generating all pairs shortest path information in a directed outerplanar graph.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

An algorithm is presented for generating a succinct encoding of all pairs shortest path information in a directed planar graph G with real-valued edge costs but no negative cycles. The algorithm runs in &Ogr;(pn) time, where n is the number of vertices in G, and p is the minimum cardinality of a subset of the faces that cover all vertices, taken over all planar embeddings of G. Linear-time algorithms are presented for various subproblems including that of finding an appropriate embedding of G and a corresponding face-on-vertex covering of cardinality &Ogr;(p), and of generating all pairs shortest path information in a directed outerplanar graph.
平面图中全对最短路径的一种新方法
提出了一种生成无负环且边值为实值的有向平面图G上所有对最短路径信息的简洁编码算法。该算法在&Ogr;(pn)时间内运行,其中n是G中的顶点数,p是覆盖G的所有平面嵌入的所有顶点的面子集的最小基数,p是覆盖G的所有平面嵌入的最小基数。对于各种子问题,包括寻找G的适当嵌入和相应的基数&Ogr;(p)的面-顶点覆盖,以及在有向外平面图中生成所有对最短路径信息的线性时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信