{"title":"Quantum computing for manufacturing and supply chain optimization: enhancing efficiency, reducing costs, and improving product quality","authors":"Weinberg Jiang Chen, Griffin Schworm Marcus, D'Souza Leesburg","doi":"10.35335/emod.v15i3.48","DOIUrl":null,"url":null,"abstract":"The research explores the application of quantum computing to manufacturing and supply chain optimization in an effort to increase productivity, reduce costs, and improve product quality. Quantum algorithms, specifically the Quantum Approximate Optimization Algorithm (QAOA), are developed and evaluated to solve complex optimization problems in these domains. Quantum computing approaches are contrasted with traditional optimization techniques to demonstrate the potential advantages of quantum algorithms in terms of solution quality and working time efficiency. Practical implementation considerations of data availability, algorithm scalability, and system integration are also discussed. This research shows that quantum algorithms can effectively optimize production scheduling, resource allocation, and supply chain management, resulting in shorter production schedules and improved operational performance. This research recognizes the limitations of current quantum hardware, the complexity of the problem domain, and the difficulty of implementation. Despite these limitations, this research lays the foundation for further investigation and innovation in quantum computing for manufacturing and supply chain optimization, highlighting the potential for long-term transformative effects on industrial operations.","PeriodicalId":262913,"journal":{"name":"International Journal of Enterprise Modelling","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35335/emod.v15i3.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The research explores the application of quantum computing to manufacturing and supply chain optimization in an effort to increase productivity, reduce costs, and improve product quality. Quantum algorithms, specifically the Quantum Approximate Optimization Algorithm (QAOA), are developed and evaluated to solve complex optimization problems in these domains. Quantum computing approaches are contrasted with traditional optimization techniques to demonstrate the potential advantages of quantum algorithms in terms of solution quality and working time efficiency. Practical implementation considerations of data availability, algorithm scalability, and system integration are also discussed. This research shows that quantum algorithms can effectively optimize production scheduling, resource allocation, and supply chain management, resulting in shorter production schedules and improved operational performance. This research recognizes the limitations of current quantum hardware, the complexity of the problem domain, and the difficulty of implementation. Despite these limitations, this research lays the foundation for further investigation and innovation in quantum computing for manufacturing and supply chain optimization, highlighting the potential for long-term transformative effects on industrial operations.