Weak Solutions of Fractional Order Differential Equations via Volterra-Stieltjes Integral Operator

A. El-Sayed, W. El-Sayed, A. El-Mowla
{"title":"Weak Solutions of Fractional Order Differential Equations via Volterra-Stieltjes Integral Operator","authors":"A. El-Sayed, W. El-Sayed, A. El-Mowla","doi":"10.7862/RF.2017.6","DOIUrl":null,"url":null,"abstract":"The fractional derivative of the Riemann-Liouville and Caputo types played an important role in the development of the theory of fractional derivatives, integrals and for its applications in pure mathematics ([18], [21]). In this paper, we study the existence of weak solutions for fractional differential equations of Riemann-Liouville and Caputo types. We depend on converting of the mentioned equations to the form of functional integral equations of Volterra-Stieltjes type in reflexive Banach spaces. AMS Subject Classification: 35D30, 34A08, 26A42.","PeriodicalId":345762,"journal":{"name":"Journal of Mathematics and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/RF.2017.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The fractional derivative of the Riemann-Liouville and Caputo types played an important role in the development of the theory of fractional derivatives, integrals and for its applications in pure mathematics ([18], [21]). In this paper, we study the existence of weak solutions for fractional differential equations of Riemann-Liouville and Caputo types. We depend on converting of the mentioned equations to the form of functional integral equations of Volterra-Stieltjes type in reflexive Banach spaces. AMS Subject Classification: 35D30, 34A08, 26A42.
分数阶微分方程的Volterra-Stieltjes积分算子弱解
Riemann-Liouville和Caputo类型的分数阶导数在分数阶导数、积分理论的发展及其在纯数学中的应用中发挥了重要作用([18],[21])。本文研究了Riemann-Liouville型和Caputo型分数阶微分方程弱解的存在性。我们依赖于将上述方程转化为自反Banach空间中Volterra-Stieltjes型泛函积分方程的形式。学科分类:35D30、34A08、26A42。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信