{"title":"Weak Solutions of Fractional Order Differential Equations via Volterra-Stieltjes Integral Operator","authors":"A. El-Sayed, W. El-Sayed, A. El-Mowla","doi":"10.7862/RF.2017.6","DOIUrl":null,"url":null,"abstract":"The fractional derivative of the Riemann-Liouville and Caputo types played an important role in the development of the theory of fractional derivatives, integrals and for its applications in pure mathematics ([18], [21]). In this paper, we study the existence of weak solutions for fractional differential equations of Riemann-Liouville and Caputo types. We depend on converting of the mentioned equations to the form of functional integral equations of Volterra-Stieltjes type in reflexive Banach spaces. AMS Subject Classification: 35D30, 34A08, 26A42.","PeriodicalId":345762,"journal":{"name":"Journal of Mathematics and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/RF.2017.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The fractional derivative of the Riemann-Liouville and Caputo types played an important role in the development of the theory of fractional derivatives, integrals and for its applications in pure mathematics ([18], [21]). In this paper, we study the existence of weak solutions for fractional differential equations of Riemann-Liouville and Caputo types. We depend on converting of the mentioned equations to the form of functional integral equations of Volterra-Stieltjes type in reflexive Banach spaces. AMS Subject Classification: 35D30, 34A08, 26A42.