Face tracking with convolutional neural network heat-map

Nhu-Tai Do, Soohyung Kim, Hyung-Jeong Yang, Gueesang Lee, In Seop Na
{"title":"Face tracking with convolutional neural network heat-map","authors":"Nhu-Tai Do, Soohyung Kim, Hyung-Jeong Yang, Gueesang Lee, In Seop Na","doi":"10.1145/3184066.3184081","DOIUrl":null,"url":null,"abstract":"In this paper, we apply a heat-map approach for human face tracking. We utilize the heat-map extracted from the convolutional neural networks (CNN) for face / non-face classification problem. The CNN architecture we build is a shallow network to extract information that is meaningful in locating an object. In addition, we made many CNNs with changes in pool-size of the last layer to obtain a well-defined heat-map. Experiments in the Visual Tracking Object dataset show that the results of the method are very encouraging. This shows the effectiveness of our proposed method.","PeriodicalId":109559,"journal":{"name":"International Conference on Machine Learning and Soft Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184066.3184081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we apply a heat-map approach for human face tracking. We utilize the heat-map extracted from the convolutional neural networks (CNN) for face / non-face classification problem. The CNN architecture we build is a shallow network to extract information that is meaningful in locating an object. In addition, we made many CNNs with changes in pool-size of the last layer to obtain a well-defined heat-map. Experiments in the Visual Tracking Object dataset show that the results of the method are very encouraging. This shows the effectiveness of our proposed method.
基于卷积神经网络热图的人脸跟踪
在本文中,我们将热图方法应用于人脸跟踪。我们利用卷积神经网络(CNN)提取的热图进行人脸/非人脸分类问题。我们构建的CNN架构是一个浅层网络,用于提取对定位目标有意义的信息。此外,我们制作了许多cnn,改变了最后一层池的大小,以获得一个定义良好的热图。在视觉跟踪目标数据集上的实验表明,该方法的效果是令人鼓舞的。这表明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信