{"title":"Distributed learning of equilibria for a stochastic game on interference channels","authors":"A. KrishnaChaitanya, V. Sharma, U. Mukherji","doi":"10.1109/SPAWC.2015.7227118","DOIUrl":null,"url":null,"abstract":"We consider a wireless communication system in which N transmitter-receiver pairs want to communicate with each other. Each transmitter transmits data at a certain rate using a power that depends on the channel gain to its receiver. If a receiver can successfully receive the message, it sends an acknowledgement (ACK), else it sends a negative ACK (NACK). Each user aims to maximize its probability of successful transmission. We formulate this problem as a stochastic game and propose a fully distributed learning algorithm to find a correlated equilibrium (CE). We also propose a fully distributed learning algorithm to find a Pareto optimal solution, and we compare the utilities of each user at the CE and the Pareto point and also with some other well known recent algorithms.","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We consider a wireless communication system in which N transmitter-receiver pairs want to communicate with each other. Each transmitter transmits data at a certain rate using a power that depends on the channel gain to its receiver. If a receiver can successfully receive the message, it sends an acknowledgement (ACK), else it sends a negative ACK (NACK). Each user aims to maximize its probability of successful transmission. We formulate this problem as a stochastic game and propose a fully distributed learning algorithm to find a correlated equilibrium (CE). We also propose a fully distributed learning algorithm to find a Pareto optimal solution, and we compare the utilities of each user at the CE and the Pareto point and also with some other well known recent algorithms.