Abir Messaoudi, Chayma Fourati, H. Haddad, Moez BenHajhmida
{"title":"iCompass Working Notes for the Nuanced Arabic Dialect Identification Shared task","authors":"Abir Messaoudi, Chayma Fourati, H. Haddad, Moez BenHajhmida","doi":"10.18653/v1/2022.wanlp-1.41","DOIUrl":null,"url":null,"abstract":"We describe our submitted system to the Nuanced Arabic Dialect Identification (NADI) shared task. We tackled only the first subtask (Subtask 1). We used state-of-the-art Deep Learning models and pre-trained contextualized text representation models that we finetuned according to the downstream task in hand. As a first approach, we used BERT Arabic variants: MARBERT with its two versions MARBERT v1 and MARBERT v2, we combined MARBERT embeddings with a CNN classifier, and finally, we tested the Quasi-Recurrent Neural Networks (QRNN) model. The results found show that version 2 of MARBERT outperforms all of the previously mentioned models on Subtask 1.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We describe our submitted system to the Nuanced Arabic Dialect Identification (NADI) shared task. We tackled only the first subtask (Subtask 1). We used state-of-the-art Deep Learning models and pre-trained contextualized text representation models that we finetuned according to the downstream task in hand. As a first approach, we used BERT Arabic variants: MARBERT with its two versions MARBERT v1 and MARBERT v2, we combined MARBERT embeddings with a CNN classifier, and finally, we tested the Quasi-Recurrent Neural Networks (QRNN) model. The results found show that version 2 of MARBERT outperforms all of the previously mentioned models on Subtask 1.