Real-time GeoAI for high-resolution mapping and segmentation of arctic permafrost features: the case of ice-wedge polygons

Wenwen Li, Chia-Yu Hsu, Sizhe Wang, C. Witharana, A. Liljedahl
{"title":"Real-time GeoAI for high-resolution mapping and segmentation of arctic permafrost features: the case of ice-wedge polygons","authors":"Wenwen Li, Chia-Yu Hsu, Sizhe Wang, C. Witharana, A. Liljedahl","doi":"10.1145/3557918.3565869","DOIUrl":null,"url":null,"abstract":"This paper introduces a real-time GeoAI workflow for large-scale image analysis and the segmentation of Arctic permafrost features at a fine-granularity. Very high-resolution (0.5m) commercial imagery is used in this analysis. To achieve real-time prediction, our workflow employs a lightweight, deep learning-based instance segmentation model, SparseInst, which introduces and uses Instance Activation Maps to accurately locate the position of objects within the image scene. Experimental results show that the model can achieve better accuracy of prediction at a much faster inference speed than the popular Mask-RCNN model.","PeriodicalId":428859,"journal":{"name":"Proceedings of the 5th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3557918.3565869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a real-time GeoAI workflow for large-scale image analysis and the segmentation of Arctic permafrost features at a fine-granularity. Very high-resolution (0.5m) commercial imagery is used in this analysis. To achieve real-time prediction, our workflow employs a lightweight, deep learning-based instance segmentation model, SparseInst, which introduces and uses Instance Activation Maps to accurately locate the position of objects within the image scene. Experimental results show that the model can achieve better accuracy of prediction at a much faster inference speed than the popular Mask-RCNN model.
用于北极永久冻土特征高分辨率制图和分割的实时GeoAI:冰楔多边形的情况
本文介绍了一种用于大规模图像分析和细粒度北极冻土特征分割的实时GeoAI工作流程。本分析使用了高分辨率(0.5m)商业图像。为了实现实时预测,我们的工作流程采用了一种轻量级的、基于深度学习的实例分割模型SparseInst,该模型引入并使用实例激活地图(instance Activation Maps)来准确定位图像场景中物体的位置。实验结果表明,该模型比目前流行的Mask-RCNN模型在更快的推理速度下获得了更好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信