Gabriel Duflo, Emmanuel Kieffer, Matthias R. Brust, Grégoire Danoy, P. Bouvry
{"title":"A GP Hyper-Heuristic Approach for Generating TSP Heuristics","authors":"Gabriel Duflo, Emmanuel Kieffer, Matthias R. Brust, Grégoire Danoy, P. Bouvry","doi":"10.1109/IPDPSW.2019.00094","DOIUrl":null,"url":null,"abstract":"A wide range of heuristics has been developed over the last decades as a way to obtain good quality solutions in reasonable time on large scale optimisation problems. However, heuristics are problem specific, i.e. lack of generalisation potential, while requiring time to design. Hyper-heuristics have been proposed to address these limitations by directly searching in the heuristics' space. This work more precisely focuses on a heuristic generation method, as opposed to heuristic selection, for the travelling salesman problem (TSP). Learning is achieved with a genetic programming (GP) approach, for which novel specific terminals are introduced. The performance of the proposed GP hyper-heuristic is evaluated on a large set of TSP instances and compared to state-of-the-art heuristics. Experiments demonstrate that the generated heuristics are outperforming existing ones while having similar or lower complexity.","PeriodicalId":292054,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2019.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
A wide range of heuristics has been developed over the last decades as a way to obtain good quality solutions in reasonable time on large scale optimisation problems. However, heuristics are problem specific, i.e. lack of generalisation potential, while requiring time to design. Hyper-heuristics have been proposed to address these limitations by directly searching in the heuristics' space. This work more precisely focuses on a heuristic generation method, as opposed to heuristic selection, for the travelling salesman problem (TSP). Learning is achieved with a genetic programming (GP) approach, for which novel specific terminals are introduced. The performance of the proposed GP hyper-heuristic is evaluated on a large set of TSP instances and compared to state-of-the-art heuristics. Experiments demonstrate that the generated heuristics are outperforming existing ones while having similar or lower complexity.