Automatic Identification of Epileptic Focus on High-Frequency Components in Interictal iEEG

Most. Sheuli Akter, M. Islam, Toshihisa Tanaka, K. Fukumori, Yasushi Limura, H. Sugano
{"title":"Automatic Identification of Epileptic Focus on High-Frequency Components in Interictal iEEG","authors":"Most. Sheuli Akter, M. Islam, Toshihisa Tanaka, K. Fukumori, Yasushi Limura, H. Sugano","doi":"10.1109/IIAI-AAI.2019.00233","DOIUrl":null,"url":null,"abstract":"The localization of the seizure focus affected by epilepsy is crucial for epilepsy treatment due to observing long-term interictal intracranial electroencephalogram (iEEG) for categorizing the patterns of seizures by the neurological experts. Therefore, a computer-aided system based on machine learning method for automatic localization of focal patterns is promising future. In this study, we presents a filter-bank entropy-based feature-extraction approach in high-frequency components to detect epileptic focus, which consider a valid biomarkers to guide epilepsy surgery. The experimental results on real-world interictal iEEG recorded from eight patients demonstrate that our proposed method can achieve average AUC 0.79, which can reduce the workload of clinical experts for detection of epileptic focal.","PeriodicalId":136474,"journal":{"name":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2019.00233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The localization of the seizure focus affected by epilepsy is crucial for epilepsy treatment due to observing long-term interictal intracranial electroencephalogram (iEEG) for categorizing the patterns of seizures by the neurological experts. Therefore, a computer-aided system based on machine learning method for automatic localization of focal patterns is promising future. In this study, we presents a filter-bank entropy-based feature-extraction approach in high-frequency components to detect epileptic focus, which consider a valid biomarkers to guide epilepsy surgery. The experimental results on real-world interictal iEEG recorded from eight patients demonstrate that our proposed method can achieve average AUC 0.79, which can reduce the workload of clinical experts for detection of epileptic focal.
间歇期脑电图中癫痫焦点高频分量的自动识别
神经学专家通过观察长期间期颅内脑电图(iEEG)对癫痫发作模式进行分类,确定癫痫发作病灶的定位对癫痫治疗至关重要。因此,基于机器学习方法的计算机辅助系统对焦点图案进行自动定位是很有前景的。在这项研究中,我们提出了一种基于滤波器库熵的高频成分特征提取方法来检测癫痫病灶,该方法考虑了一种有效的生物标志物来指导癫痫手术。对8例患者的真实间断iEEG实验结果表明,该方法的平均AUC可达0.79,可减少临床专家对癫痫局灶的检测工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信