{"title":"An hardware accelerator design of Mobile-Net model on FPGA","authors":"Sanjaya M V, M. Rao","doi":"10.1145/3564121.3564124","DOIUrl":null,"url":null,"abstract":"Domain specific hardware architectures and hardware accelerators have been a vital part of modern system design. Especially for math intensive applications involving tasks related to machine perception, incorporating hardware accelerators that work in tandem with general purpose micro-processors can prove to be energy efficient both at server and edge scenarios. FPGAs, due to their reconfigurability makes it possible to have customized hardware designed as per the computational and memory requirements specific to that application. This work proposes an optimized low latency hardware accelerator implementation of Mobile-net V2 CNN on an FPGA. This paper presents an implementation of Mobile-net-V2 inference on a Xilinx Ultrascale+ MPSOC platform incorporating solely half precision floating point arithmetic for both parameters and activations of the network. The proposed implementation is also optimized by merging all batch-norm layers with its preceding convolutional layers. For applications which cannot compromise on performance of the algorithm for execution speed and efficiency, an optimized floating point inference is proposed. The current implementation offers an overall performance improvement of at-least 20X with moderate resource utilization with minimal variance in inference latency, as compared to performing inference on the processor alone with almost no degradation in the model accuracy.","PeriodicalId":166150,"journal":{"name":"Proceedings of the Second International Conference on AI-ML Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on AI-ML Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564121.3564124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Domain specific hardware architectures and hardware accelerators have been a vital part of modern system design. Especially for math intensive applications involving tasks related to machine perception, incorporating hardware accelerators that work in tandem with general purpose micro-processors can prove to be energy efficient both at server and edge scenarios. FPGAs, due to their reconfigurability makes it possible to have customized hardware designed as per the computational and memory requirements specific to that application. This work proposes an optimized low latency hardware accelerator implementation of Mobile-net V2 CNN on an FPGA. This paper presents an implementation of Mobile-net-V2 inference on a Xilinx Ultrascale+ MPSOC platform incorporating solely half precision floating point arithmetic for both parameters and activations of the network. The proposed implementation is also optimized by merging all batch-norm layers with its preceding convolutional layers. For applications which cannot compromise on performance of the algorithm for execution speed and efficiency, an optimized floating point inference is proposed. The current implementation offers an overall performance improvement of at-least 20X with moderate resource utilization with minimal variance in inference latency, as compared to performing inference on the processor alone with almost no degradation in the model accuracy.