{"title":"Entropy-based anomaly detection for in-vehicle networks","authors":"Michael Müter, Naim Asaj","doi":"10.1109/IVS.2011.5940552","DOIUrl":null,"url":null,"abstract":"Due to an increased connectivity and seamless integration of information technology into modern vehicles, a trend of research in the automotive domain is the development of holistic IT security concepts. Within the scope of this development, vehicular attack detection is one concept which gains an increased attention, because of its reactive nature that allows to respond to threats during runtime. In this paper we explore the applicability of entropy-based attack detection for in-vehicle networks. We illustrate the crucial aspects for an adaptation of such an approach to the automotive domain. Moreover, we show first exemplary results by applying the approach to measurements derived from a standard vehicle's CAN-Body network.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"277","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 277
Abstract
Due to an increased connectivity and seamless integration of information technology into modern vehicles, a trend of research in the automotive domain is the development of holistic IT security concepts. Within the scope of this development, vehicular attack detection is one concept which gains an increased attention, because of its reactive nature that allows to respond to threats during runtime. In this paper we explore the applicability of entropy-based attack detection for in-vehicle networks. We illustrate the crucial aspects for an adaptation of such an approach to the automotive domain. Moreover, we show first exemplary results by applying the approach to measurements derived from a standard vehicle's CAN-Body network.