Competitive Swarm Optimization with Dynamic Opposition-based Learning

Yangfan Zhang, Jun Sun
{"title":"Competitive Swarm Optimization with Dynamic Opposition-based Learning","authors":"Yangfan Zhang, Jun Sun","doi":"10.1109/ISC2.2018.8656787","DOIUrl":null,"url":null,"abstract":"In order to enable the PSO to jump out of the local optima, we propose a Competitive Swarm Optimization with Dynamic Opposition-based learning (CSO-DOL). CSO-DOL contains two strategies: Competitive Learning and Opposition-based Learning. In each iteration, two randomly selected particles compete to get the winner and the loser. Then update the loser using opposition-based learning or competitive learning dynamically according to whether it falls into local optima to expand its search space. Compared with other state-of-art PSO variants on thirteen benchmark functions, the proposed algorithm can effectively help the particles jump out of the local optima on multimodal functions and has a faster convergence speed on simple unimodal functions.","PeriodicalId":344652,"journal":{"name":"2018 IEEE International Smart Cities Conference (ISC2)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2018.8656787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to enable the PSO to jump out of the local optima, we propose a Competitive Swarm Optimization with Dynamic Opposition-based learning (CSO-DOL). CSO-DOL contains two strategies: Competitive Learning and Opposition-based Learning. In each iteration, two randomly selected particles compete to get the winner and the loser. Then update the loser using opposition-based learning or competitive learning dynamically according to whether it falls into local optima to expand its search space. Compared with other state-of-art PSO variants on thirteen benchmark functions, the proposed algorithm can effectively help the particles jump out of the local optima on multimodal functions and has a faster convergence speed on simple unimodal functions.
基于动态对立学习的竞争群优化
为了使PSO能够跳出局部最优,我们提出了一种基于动态对立学习的竞争群优化方法(CSO-DOL)。CSO-DOL包含两种策略:竞争性学习和基于对手的学习。在每次迭代中,两个随机选择的粒子竞争以获得赢家和输家。然后根据输家是否陷入局部最优,采用基于对手的学习或竞争学习动态更新输家,扩大输家的搜索空间。与现有的13种基准函数上的粒子群优化算法相比,该算法能够有效地帮助粒子跳出多模态函数的局部最优,并且在简单单峰函数上具有更快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信