The EEG Signal Process Based on EEMD

Xiao-jun Zhu, Shi-qin Lv, L. Fan, Xue-li Yu
{"title":"The EEG Signal Process Based on EEMD","authors":"Xiao-jun Zhu, Shi-qin Lv, L. Fan, Xue-li Yu","doi":"10.1109/IPTC.2011.67","DOIUrl":null,"url":null,"abstract":"Hilbert Huang Transform (HHT), which is based on EMD (Empirical Mode Decomposition) and Hilbert transform method, is a new signal analysis method. It suits for analyzing the non-linear and non-stationary signals, such as EEG signal particularly. The traditional EMD method has the Mode Mixing problem. Therefore a new method basing on Ensemble Empirical Mode Decomposition (EEMD) for processing the signal has been approached in this paper. This method can effectively ensure the integrity of signal's mapping in the different regions through adding random white noise component into the original data, and overcome the mode mixing problem of traditional EMD decomposition.","PeriodicalId":388589,"journal":{"name":"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTC.2011.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Hilbert Huang Transform (HHT), which is based on EMD (Empirical Mode Decomposition) and Hilbert transform method, is a new signal analysis method. It suits for analyzing the non-linear and non-stationary signals, such as EEG signal particularly. The traditional EMD method has the Mode Mixing problem. Therefore a new method basing on Ensemble Empirical Mode Decomposition (EEMD) for processing the signal has been approached in this paper. This method can effectively ensure the integrity of signal's mapping in the different regions through adding random white noise component into the original data, and overcome the mode mixing problem of traditional EMD decomposition.
基于EEMD的脑电信号处理
希尔伯特黄变换(Hilbert Huang Transform, HHT)是一种基于经验模态分解(EMD)和希尔伯特变换方法的新型信号分析方法。它特别适用于分析非线性和非平稳信号,如脑电图信号。传统的EMD方法存在模态混合问题。为此,本文探讨了一种基于集成经验模态分解(EEMD)的信号处理新方法。该方法通过在原始数据中加入随机白噪声分量,有效保证了信号在不同区域映射的完整性,克服了传统EMD分解的模态混叠问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信