Evaluation of AHRS algorithms for inertial personal localization in industrial environments

Estefania Munoz Diaz, F. Müller, A. R. Jiménez, F. Zampella
{"title":"Evaluation of AHRS algorithms for inertial personal localization in industrial environments","authors":"Estefania Munoz Diaz, F. Müller, A. R. Jiménez, F. Zampella","doi":"10.1109/ICIT.2015.7125605","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison among several state-of-the-art Attitude and Heading Reference Systems (AHRS). These algorithms can be used for 3D orientation and position estimation of users or devices. The robust performance of these AHRS algorithms is of paramount importance, specially in environments with potential external perturbations, such as industrial environments. The comparison among AHRS algorithms presented in this paper also includes an algorithm recently proposed by the authors (DLR-AHRS). In this paper the performance of the different AHRS will be studied, including the effect of magnetic perturbations on the performance of orientation estimation, and the effect of using different patterns of motion when the sensor is carried by a user at different locations (pocket, foot/shoe, hand). These AHRS algorithms are also compared with the Kalman-based commercially available AHRS algorithm of Xsens. The performance of the AHRS algorithms depends strongly on the strategies used to reject perturbations (sudden accelerations or deformations of the Earth magnetic field) and the ability of the systems to estimate the biases of the gyroscopes.","PeriodicalId":156295,"journal":{"name":"2015 IEEE International Conference on Industrial Technology (ICIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2015.7125605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper presents a comparison among several state-of-the-art Attitude and Heading Reference Systems (AHRS). These algorithms can be used for 3D orientation and position estimation of users or devices. The robust performance of these AHRS algorithms is of paramount importance, specially in environments with potential external perturbations, such as industrial environments. The comparison among AHRS algorithms presented in this paper also includes an algorithm recently proposed by the authors (DLR-AHRS). In this paper the performance of the different AHRS will be studied, including the effect of magnetic perturbations on the performance of orientation estimation, and the effect of using different patterns of motion when the sensor is carried by a user at different locations (pocket, foot/shoe, hand). These AHRS algorithms are also compared with the Kalman-based commercially available AHRS algorithm of Xsens. The performance of the AHRS algorithms depends strongly on the strategies used to reject perturbations (sudden accelerations or deformations of the Earth magnetic field) and the ability of the systems to estimate the biases of the gyroscopes.
工业环境下AHRS惯性个人定位算法的评价
本文对几种最先进的姿态和航向参考系统进行了比较。这些算法可用于用户或设备的三维方向和位置估计。这些AHRS算法的鲁棒性是至关重要的,特别是在具有潜在外部扰动的环境中,如工业环境。本文所提出的AHRS算法之间的比较也包括了作者最近提出的一种算法(DLR-AHRS)。本文将研究不同AHRS的性能,包括磁扰动对方向估计性能的影响,以及当用户在不同位置(口袋,脚/鞋,手)携带传感器时使用不同运动模式的影响。并将这些AHRS算法与Xsens基于卡尔曼的市售AHRS算法进行了比较。AHRS算法的性能在很大程度上取决于用于抑制扰动(地球磁场的突然加速或变形)的策略以及系统估计陀螺仪偏差的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信