Life cycle assessment of rice hull — Coal co-firing for portland cement clinker production

D. J. Mariano, J. M. B. Biona, Jeremias A. Gonzaga
{"title":"Life cycle assessment of rice hull — Coal co-firing for portland cement clinker production","authors":"D. J. Mariano, J. M. B. Biona, Jeremias A. Gonzaga","doi":"10.1109/HNICEM.2014.7016251","DOIUrl":null,"url":null,"abstract":"Co-firing coal with biomass is one way to reduce greenhouse gas contribution from clinker production. A model was developed to determine the optimum percentage mix of rice hull for a cement plant in the Philippines that would provide the minimum life impact while ensuring product quality and economic viability. Results indicated that optimum environmental benefits is obtained at 64% rice hull thermal substitution. It is important however also to take into consideration rice hull supply limitations and system modification requirements.","PeriodicalId":309548,"journal":{"name":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2014.7016251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Co-firing coal with biomass is one way to reduce greenhouse gas contribution from clinker production. A model was developed to determine the optimum percentage mix of rice hull for a cement plant in the Philippines that would provide the minimum life impact while ensuring product quality and economic viability. Results indicated that optimum environmental benefits is obtained at 64% rice hull thermal substitution. It is important however also to take into consideration rice hull supply limitations and system modification requirements.
稻壳-煤共烧生产硅酸盐水泥熟料的生命周期评价
煤与生物质共烧是减少熟料生产产生的温室气体的一种方法。开发了一个模型,以确定菲律宾一家水泥厂的最佳稻壳混合比例,该比例将提供最小的寿命影响,同时确保产品质量和经济可行性。结果表明,稻壳热替代率为64%时,环境效益最佳。然而,考虑到稻壳供应限制和系统修改要求也很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信