Methodology for Translation of Video Content Activates into Text Description: Three Object Activities Action

Ramesh M. Kagalkar
{"title":"Methodology for Translation of Video Content Activates into Text Description: Three Object Activities Action","authors":"Ramesh M. Kagalkar","doi":"10.5815/ijigsp.2022.04.05","DOIUrl":null,"url":null,"abstract":": This paper presents a natural language text description from video content activities. Here it analyzes the content of any video to identify the number of objects in that video content, what actions and activities are going on has to track and match the action model then based on that generate the grammatical correct text description in English is discussed. It uses two approaches, training, and testing. In the training, we need to maintain a database i.e. subject-verb and object are assigned to extract features of images, and the second approach called testing will automatically generate text descriptions from video content. The implemented system will translate complex video contents into text descriptions and by the duration of a one-minute video with three different object considerations. For this evaluation, a standard DB of YouTube is considered where 250 samples from 50 different domains. The overall system gives an accuracy of 93%.","PeriodicalId":378340,"journal":{"name":"International Journal of Image, Graphics and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image, Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijigsp.2022.04.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: This paper presents a natural language text description from video content activities. Here it analyzes the content of any video to identify the number of objects in that video content, what actions and activities are going on has to track and match the action model then based on that generate the grammatical correct text description in English is discussed. It uses two approaches, training, and testing. In the training, we need to maintain a database i.e. subject-verb and object are assigned to extract features of images, and the second approach called testing will automatically generate text descriptions from video content. The implemented system will translate complex video contents into text descriptions and by the duration of a one-minute video with three different object considerations. For this evaluation, a standard DB of YouTube is considered where 250 samples from 50 different domains. The overall system gives an accuracy of 93%.
视频内容活动转化为文本的方法描述:三个对象活动行动
本文提出了一种基于视频内容活动的自然语言文本描述方法。在这里,它分析任何视频的内容,以识别该视频内容中的对象数量,正在进行的动作和活动必须跟踪和匹配动作模型,然后在此基础上生成语法正确的英语文本描述。它使用两种方法,训练和测试。在训练中,我们需要维护一个数据库,即分配主谓和宾语来提取图像的特征,第二种称为测试的方法将自动从视频内容中生成文本描述。所实现的系统将复杂的视频内容翻译成文本描述,并在一分钟的视频中考虑三个不同的对象。为了进行评估,我们考虑了YouTube的一个标准数据库,其中包含来自50个不同域的250个样本。整个系统的准确率为93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信