Fault Detection of Electric Motor Coil by YOLOv3 with Spatial Attention

Mizuki Kato, Y. Iwamoto, Yen-Wei Chen, Toru Aiba, T. Sugimoto
{"title":"Fault Detection of Electric Motor Coil by YOLOv3 with Spatial Attention","authors":"Mizuki Kato, Y. Iwamoto, Yen-Wei Chen, Toru Aiba, T. Sugimoto","doi":"10.1109/ICCE53296.2022.9730324","DOIUrl":null,"url":null,"abstract":"Object detection has been widely applied to the visual inspection of factory products. Moreover, because the detection model must be improved based on the object and problem set, the model parameters must be fine-tuned and new feature extractors must be introduced. We present an automatic fault detection method for electric motor coils based on deep learning in this manuscript. To the best of our knowledge, this is the first deep learning approach for fault detection of electric motor coil. Furthermore, we combine the spatial attention mechanism with the object detection method YOLOv3 to highlight the location information of the defective part in the image. We built a real-time detection system so that anyone could use the detection model we formed.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection has been widely applied to the visual inspection of factory products. Moreover, because the detection model must be improved based on the object and problem set, the model parameters must be fine-tuned and new feature extractors must be introduced. We present an automatic fault detection method for electric motor coils based on deep learning in this manuscript. To the best of our knowledge, this is the first deep learning approach for fault detection of electric motor coil. Furthermore, we combine the spatial attention mechanism with the object detection method YOLOv3 to highlight the location information of the defective part in the image. We built a real-time detection system so that anyone could use the detection model we formed.
基于空间注意力的YOLOv3电机线圈故障检测
目标检测已广泛应用于工厂产品的目视检测。此外,由于检测模型必须基于对象和问题集进行改进,因此必须对模型参数进行微调并引入新的特征提取器。本文提出了一种基于深度学习的电机线圈故障自动检测方法。据我们所知,这是第一个用于电机线圈故障检测的深度学习方法。进一步,我们将空间注意机制与目标检测方法YOLOv3相结合,突出图像中缺陷部分的位置信息。我们建立了一个实时检测系统,这样任何人都可以使用我们形成的检测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信