Interval type-2 fuzzy set application in fault detection for chemical reactor with TLBO algorithm

M. Enjavimadar, B. Safarinejadian, M. Mozaffari
{"title":"Interval type-2 fuzzy set application in fault detection for chemical reactor with TLBO algorithm","authors":"M. Enjavimadar, B. Safarinejadian, M. Mozaffari","doi":"10.1109/ICCIAUTOM.2017.8258654","DOIUrl":null,"url":null,"abstract":"In this paper, an innovative fault detection method has been presented for nonlinear systems based on interval type-2 fuzzy model. In the proposed approach, a confidence bound has been obtained for the input-output data in the normal operating conditions of the system. The confidence bound is approximated by using a fuzzy model with interval parameters. Confident bound makes it possible to use arbitrary sets of identification input signals. Finally, a chemical reactor system has been used to demonstrate the benefits of the proposed method in fault detection applications.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, an innovative fault detection method has been presented for nonlinear systems based on interval type-2 fuzzy model. In the proposed approach, a confidence bound has been obtained for the input-output data in the normal operating conditions of the system. The confidence bound is approximated by using a fuzzy model with interval parameters. Confident bound makes it possible to use arbitrary sets of identification input signals. Finally, a chemical reactor system has been used to demonstrate the benefits of the proposed method in fault detection applications.
区间2型模糊集在TLBO算法化学反应器故障检测中的应用
本文提出了一种基于区间2型模糊模型的非线性系统故障检测方法。在该方法中,得到了系统正常运行条件下输入输出数据的置信界。采用带区间参数的模糊模型逼近置信边界。自信界使得使用任意一组识别输入信号成为可能。最后,以一个化学反应器系统为例,验证了该方法在故障检测中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信