Physical Layer Security in Intervehicular Cognitive Relaying Communication Systems

Anshul Pandey, S. Yadav
{"title":"Physical Layer Security in Intervehicular Cognitive Relaying Communication Systems","authors":"Anshul Pandey, S. Yadav","doi":"10.1109/CICT48419.2019.9066185","DOIUrl":null,"url":null,"abstract":"This paper investigates the secrecy performance of an intervehicular cognitive relaying network. We assume that the primary receiver (PU) in the primary network is fixed, whereas the secondary source, secondary relay, secondary destination, and eavesdropper are moving vehicles. Considering such scenario, the channel between fixed node and vehicle node is modeled as Rayleigh fading, while the vehicle-to-vehicle channels are modeled as double-Rayleigh fading. In order to analyze the impact of eavesdropper channel and maximum tolerable interference level at PU, we firstly derive the tight closed-form expression of the secrecy outage probability (SOP) for the considered system. Moreover, to extract further insights, the asymptotic SOP expression in the high signal-to-noise ratio (SNR) regime is also deduced, which reveals that the eavesdropper has detrimental effect on the system secrecy performance and even reduces the system secrecy diversity order to zero. Lastly, we validate our analytical finding via simulations.","PeriodicalId":234540,"journal":{"name":"2019 IEEE Conference on Information and Communication Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT48419.2019.9066185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the secrecy performance of an intervehicular cognitive relaying network. We assume that the primary receiver (PU) in the primary network is fixed, whereas the secondary source, secondary relay, secondary destination, and eavesdropper are moving vehicles. Considering such scenario, the channel between fixed node and vehicle node is modeled as Rayleigh fading, while the vehicle-to-vehicle channels are modeled as double-Rayleigh fading. In order to analyze the impact of eavesdropper channel and maximum tolerable interference level at PU, we firstly derive the tight closed-form expression of the secrecy outage probability (SOP) for the considered system. Moreover, to extract further insights, the asymptotic SOP expression in the high signal-to-noise ratio (SNR) regime is also deduced, which reveals that the eavesdropper has detrimental effect on the system secrecy performance and even reduces the system secrecy diversity order to zero. Lastly, we validate our analytical finding via simulations.
车际认知中继通信系统的物理层安全
研究了一种车载认知中继网络的保密性能。我们假设主网络中的主接收器(PU)是固定的,而辅助源、辅助中继、辅助目的地和窃听者是移动的车辆。考虑到这种情况,将固定节点与车辆节点之间的信道建模为瑞利衰落,将车与车之间的信道建模为双瑞利衰落。为了分析窃听信道和最大可容忍干扰水平对系统的影响,我们首先推导了所考虑系统的保密中断概率(SOP)的紧闭形式表达式。进一步推导了高信噪比(SNR)条件下的渐近SOP表达式,揭示了窃听者对系统保密性能的不利影响,甚至使系统保密分集阶降至零。最后,我们通过模拟验证了我们的分析发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信