{"title":"Anticipatory Stochastic Multi-Objective Optimization for uncertainty handling in portfolio selection","authors":"Carlos R. B. Azevedo, F. V. Zuben","doi":"10.1109/CEC.2013.6557566","DOIUrl":null,"url":null,"abstract":"An anticipatory stochastic multi-objective model based on S-Metric maximization is proposed. The environment is assumed to be noisy and time-varying. This raises the question of how to incorporate anticipation in metaheuristics such that the Pareto optimal solutions can reflect the uncertainty about the subsequent environments. A principled anticipatory learning method for tracking the dynamics of the objective vectors is then proposed so that the estimated S-Metric contributions of each solution can integrate the underlying stochastic uncertainty. The proposal is assessed for minimum holding, cardinality constrained portfolio selection, using real-world stock data. Preliminary results suggest that, by taking into account the underlying uncertainty in the predictive knowledge provided by a Kalman filter, we were able to reduce the sum of squared errors prediction of the portfolios ex-post return and risk estimation in out-of-sample investment environments.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
An anticipatory stochastic multi-objective model based on S-Metric maximization is proposed. The environment is assumed to be noisy and time-varying. This raises the question of how to incorporate anticipation in metaheuristics such that the Pareto optimal solutions can reflect the uncertainty about the subsequent environments. A principled anticipatory learning method for tracking the dynamics of the objective vectors is then proposed so that the estimated S-Metric contributions of each solution can integrate the underlying stochastic uncertainty. The proposal is assessed for minimum holding, cardinality constrained portfolio selection, using real-world stock data. Preliminary results suggest that, by taking into account the underlying uncertainty in the predictive knowledge provided by a Kalman filter, we were able to reduce the sum of squared errors prediction of the portfolios ex-post return and risk estimation in out-of-sample investment environments.