M. Schier, Mounir Nasri, W. Kraft, N. Kevlishvili, Johannes J. H. Paulides, L. Encica
{"title":"Combining mechanical, electrical and thermal energy conversion for ecological vehicle energy harvesting concepts","authors":"M. Schier, Mounir Nasri, W. Kraft, N. Kevlishvili, Johannes J. H. Paulides, L. Encica","doi":"10.1109/EVER.2018.8362363","DOIUrl":null,"url":null,"abstract":"In comparison with common combustion motor driven vehicles future electric driven vehicles vary more in their reachable range because of the high drive train efficiency and the different energy demand requirements in different drive conditions. One of the main issues to improve the overall range is the minimization of energy consumption. On the one hand an adapted energy management strategy is needed to achieve a more comfortable and acceptable equalization in the range. On the other hand it is important to recuperate mechanical, electrical and thermal energy, both inside and from the vehicles wherever possible. For example, it is thinkable to use the kinetic energy of braking vehicles outside the vehicle to power traffic lights. If a combustion process is used, a lot of waste thermal energy can be reused from the tailpipe. Or solar energy may be used. If a vehicle has a varying duty-cycle it makes sense to adapt the powertrain to suit the power need. Whatever the available energy, it has to go hand in hand with minimizing the energy consumption. This paper is based on the knowledge and combination of future technologies [2], which are useful to collect and convert energy coming from different sources within a vehicle.","PeriodicalId":344175,"journal":{"name":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2018.8362363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In comparison with common combustion motor driven vehicles future electric driven vehicles vary more in their reachable range because of the high drive train efficiency and the different energy demand requirements in different drive conditions. One of the main issues to improve the overall range is the minimization of energy consumption. On the one hand an adapted energy management strategy is needed to achieve a more comfortable and acceptable equalization in the range. On the other hand it is important to recuperate mechanical, electrical and thermal energy, both inside and from the vehicles wherever possible. For example, it is thinkable to use the kinetic energy of braking vehicles outside the vehicle to power traffic lights. If a combustion process is used, a lot of waste thermal energy can be reused from the tailpipe. Or solar energy may be used. If a vehicle has a varying duty-cycle it makes sense to adapt the powertrain to suit the power need. Whatever the available energy, it has to go hand in hand with minimizing the energy consumption. This paper is based on the knowledge and combination of future technologies [2], which are useful to collect and convert energy coming from different sources within a vehicle.