Online Handwritten Cursive Word Recognition by Combining Segmentation-Free and Segmentation-Based Methods

Bilan Zhu, Arti Shivram, V. Govindaraju, M. Nakagawa
{"title":"Online Handwritten Cursive Word Recognition by Combining Segmentation-Free and Segmentation-Based Methods","authors":"Bilan Zhu, Arti Shivram, V. Govindaraju, M. Nakagawa","doi":"10.1109/ICFHR.2016.0084","DOIUrl":null,"url":null,"abstract":"This paper describes an online handwritten cursive word recognition approach by combining segmentation-free and segmentation-based methods. To search the optimal segmentation and recognition path as the recognition result, we can attempt two methods: segmentation-free and segmentation-based, where we expand the search space using a character-synchronous beam search strategy. The probable search paths are evaluated by integrating character recognition scores with geometric characteristics of the character patterns in a Conditional Random Field (CRF) model. We make a comparison between online handwritten cursive word recognition using segmentation-free method and that using segmentation-based method, and then attempt combining the two methods to improve performance. Our methods restrict the search paths from the trie lexicon of words and preceding paths during path search. We show this comparison on a publicly available dataset (IAM-OnDB).","PeriodicalId":194844,"journal":{"name":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2016.0084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes an online handwritten cursive word recognition approach by combining segmentation-free and segmentation-based methods. To search the optimal segmentation and recognition path as the recognition result, we can attempt two methods: segmentation-free and segmentation-based, where we expand the search space using a character-synchronous beam search strategy. The probable search paths are evaluated by integrating character recognition scores with geometric characteristics of the character patterns in a Conditional Random Field (CRF) model. We make a comparison between online handwritten cursive word recognition using segmentation-free method and that using segmentation-based method, and then attempt combining the two methods to improve performance. Our methods restrict the search paths from the trie lexicon of words and preceding paths during path search. We show this comparison on a publicly available dataset (IAM-OnDB).
基于分词和无分词相结合的在线手写体草书识别方法
本文提出了一种将无分词和基于分词相结合的在线手写草书识别方法。为了寻找最优的分割和识别路径作为识别结果,我们可以尝试两种方法:无分割和基于分割,其中我们使用字符同步波束搜索策略扩展搜索空间。在条件随机场(CRF)模型中,通过将字符识别分数与字符模式的几何特征相结合来评估可能的搜索路径。通过对无分词方法和基于分词方法的在线手写草书识别进行比较,并尝试将两种方法结合起来提高识别性能。我们的方法在进行路径搜索时,将搜索路径从单词的trie词典和前面的路径中限制出来。我们在一个公开可用的数据集(IAM-OnDB)上展示了这种比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信