Improved Intersample Behaviour of Non-Minimum Phase Systems using State-Tracking Iterative Learning Control

Liang Oei, Kentaro Tsurumoto, W. Ohnishi
{"title":"Improved Intersample Behaviour of Non-Minimum Phase Systems using State-Tracking Iterative Learning Control","authors":"Liang Oei, Kentaro Tsurumoto, W. Ohnishi","doi":"10.1109/ICM54990.2023.10102029","DOIUrl":null,"url":null,"abstract":"Iterative learning control is well-proven technique to achieve perfect tracking performance for repetitive motion tasks. However, traditional output-tracking ILC focuses on perfect on-sample tracking, while oscillations often occur between the sampling instances. The aim of this paper is to reduce the intersample oscillations for the tracking control of minimum and non-minimum phase systems. A new ILC framework called statetracking ILC is successfully applied to a motion system. The state-tracking ILC achieves perfect state-tracking and is shown to reduce the intersample oscillations on fourth-order minimum and non-minimum phase motion systems compared to the outputtracking ILC.","PeriodicalId":416176,"journal":{"name":"2023 IEEE International Conference on Mechatronics (ICM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM54990.2023.10102029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Iterative learning control is well-proven technique to achieve perfect tracking performance for repetitive motion tasks. However, traditional output-tracking ILC focuses on perfect on-sample tracking, while oscillations often occur between the sampling instances. The aim of this paper is to reduce the intersample oscillations for the tracking control of minimum and non-minimum phase systems. A new ILC framework called statetracking ILC is successfully applied to a motion system. The state-tracking ILC achieves perfect state-tracking and is shown to reduce the intersample oscillations on fourth-order minimum and non-minimum phase motion systems compared to the outputtracking ILC.
用状态跟踪迭代学习控制改进非最小相位系统的样本间行为
迭代学习控制是一种成熟的技术,可以实现对重复性运动任务的完美跟踪。然而,传统的输出跟踪ILC侧重于完美的样本跟踪,而采样实例之间经常发生振荡。本文的目的是为了减少最小和非最小相位系统的跟踪控制中的采样间振荡。将一种新的ILC框架——状态跟踪ILC成功地应用于运动系统。与输出跟踪ILC相比,状态跟踪ILC实现了完美的状态跟踪,并减少了四阶最小和非最小相位运动系统的采样间振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信