Improving the Scalability and Security of Execution Environments for Auto-Graders in the Context of MOOCs

Sebastian Serth, Daniel Köhler, Leonard Marschke, Felix Auringer, Konrad Hanff, Jan-Eric Hellenberg, Tobias Kantusch, Maximilian Paß, C. Meinel
{"title":"Improving the Scalability and Security of Execution Environments for Auto-Graders in the Context of MOOCs","authors":"Sebastian Serth, Daniel Köhler, Leonard Marschke, Felix Auringer, Konrad Hanff, Jan-Eric Hellenberg, Tobias Kantusch, Maximilian Paß, C. Meinel","doi":"10.18420/abp2021-1","DOIUrl":null,"url":null,"abstract":": Learning a programming language requires learners to write code themselves, execute their programs interactively, and receive feedback about the correctness of their code. Many approaches with so-called auto-graders exist to grade students’ submissions and provide feedback for them automatically. University classes with hundreds of students or Massive Open Online Courses (MOOCs) with thousands of learners often use these systems. Assessing the submissions usually includes executing the students’ source code and thus implies requirements on the scalability and security of the systems. In this paper, we evaluate different execution environments and orchestration solutions for auto-graders. We compare the most promising open-source tools regarding their usability in a scalable environment required for MOOCs. According to our evaluation, Nomad, in conjunction with Docker, fulfills most requirements. We derive implications for the productive use of Nomad for an auto-grader in MOOCs.","PeriodicalId":170086,"journal":{"name":"Workshop Automatische Bewertung von Programmieraufgaben","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop Automatische Bewertung von Programmieraufgaben","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/abp2021-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

: Learning a programming language requires learners to write code themselves, execute their programs interactively, and receive feedback about the correctness of their code. Many approaches with so-called auto-graders exist to grade students’ submissions and provide feedback for them automatically. University classes with hundreds of students or Massive Open Online Courses (MOOCs) with thousands of learners often use these systems. Assessing the submissions usually includes executing the students’ source code and thus implies requirements on the scalability and security of the systems. In this paper, we evaluate different execution environments and orchestration solutions for auto-graders. We compare the most promising open-source tools regarding their usability in a scalable environment required for MOOCs. According to our evaluation, Nomad, in conjunction with Docker, fulfills most requirements. We derive implications for the productive use of Nomad for an auto-grader in MOOCs.
在mooc环境下提高自动评分执行环境的可扩展性和安全性
学习一门编程语言需要学习者自己编写代码,以交互方式执行程序,并接收关于代码正确性的反馈。有许多所谓的自动评分方法可以自动为学生的提交进行评分并提供反馈。拥有数百名学生的大学课程或拥有数千名学习者的大规模开放在线课程(MOOCs)经常使用这些系统。评估提交通常包括执行学生的源代码,因此意味着对系统的可伸缩性和安全性的要求。在本文中,我们评估了自动分级的不同执行环境和编排解决方案。我们比较了最有前途的开源工具在mooc所需的可扩展环境中的可用性。根据我们的评估,Nomad与Docker一起可以满足大多数需求。我们推导了Nomad在mooc中自动评分器的有效使用的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信