Short term forecasting using neural network approach

D. Srinivasan, A. Liew, J.S.P. Chen
{"title":"Short term forecasting using neural network approach","authors":"D. Srinivasan, A. Liew, J.S.P. Chen","doi":"10.1109/ANN.1991.213489","DOIUrl":null,"url":null,"abstract":"One of the major problems facing the electric utility is the unknown future demand of electricity, which needs to be estimated correctly. The authors describe a neural network approach to improve short term forecasts of electricity demand. This network is based on the nonstatistical neural paradigm, back propagation, which is found to be effective for forecasting of electrical load. The load is decomposed into a daily pattern reflecting the difference in activity level during the day, a weekly pattern representing the day-of-the week effect on load, a trend component concerning the seasonal growth and a weather component reflecting the deviations in load due to weather fluctuations. The performance of this network has been compared with some commonly used conventional smoothing methods, and stochastic methods in order to demonstrate the superiority of this approach.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

One of the major problems facing the electric utility is the unknown future demand of electricity, which needs to be estimated correctly. The authors describe a neural network approach to improve short term forecasts of electricity demand. This network is based on the nonstatistical neural paradigm, back propagation, which is found to be effective for forecasting of electrical load. The load is decomposed into a daily pattern reflecting the difference in activity level during the day, a weekly pattern representing the day-of-the week effect on load, a trend component concerning the seasonal growth and a weather component reflecting the deviations in load due to weather fluctuations. The performance of this network has been compared with some commonly used conventional smoothing methods, and stochastic methods in order to demonstrate the superiority of this approach.<>
利用神经网络方法进行短期预测
电力公司面临的主要问题之一是未知的未来电力需求,需要正确估计。作者描述了一种神经网络方法来改善电力需求的短期预测。该网络基于非统计神经模型,即反向传播,对电力负荷的预测是有效的。负荷被分解为反映白天活动水平差异的日模式、代表一周中某一天对负荷影响的周模式、有关季节性增长的趋势成分和反映由于天气波动而导致的负荷偏差的天气成分。将该网络的性能与一些常用的传统平滑方法和随机方法进行了比较,以证明该方法的优越性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信