Waterbath Design equipped With Temperature Distribution Monitor

Febri Indiani, D. Titisari, L. Lamidi
{"title":"Waterbath Design equipped With Temperature Distribution Monitor","authors":"Febri Indiani, D. Titisari, L. Lamidi","doi":"10.35882/JEEEMI.V1I1.3","DOIUrl":null,"url":null,"abstract":"Waterbath is a device used to create a constant temperature. This tool is used to incubates in microbiology analysis. Temperature is maintained according to the desired range. The heating element is controlled by the heater driver. This module is created by using Arduino Atmega 328 as a minimum system and time controller, Using a PID controller as temperature control, and using a DS18B20 sensor as a temperature sensor. The design of this study uses pre-experimental methods after only design research. The measurement results are done by comparing the module with a standard measurement instrument that produces the biggest % error in setting temperature of 37 ˚C which is equal to 1.21%, it is related to the boundary between water temperature and temperature setting too short which is affected by the DS18B20 temperature sensor reader that need time, to get a stable temperature reading. The minimum % error located at 60 ˚C, because to reach the temperature setting needs a long time so that DS18B20 the sensor reading is stable of setting temperature which is equal to 0.11%. The value % error of the timer is 3.4 % which the amount of the error is affected by the number of DS18B20 which is used and the delay from the microcontroller. Based on the results obtained this module can be used properly because still on the maximum limit error value less than 5%.","PeriodicalId":369032,"journal":{"name":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35882/JEEEMI.V1I1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Waterbath is a device used to create a constant temperature. This tool is used to incubates in microbiology analysis. Temperature is maintained according to the desired range. The heating element is controlled by the heater driver. This module is created by using Arduino Atmega 328 as a minimum system and time controller, Using a PID controller as temperature control, and using a DS18B20 sensor as a temperature sensor. The design of this study uses pre-experimental methods after only design research. The measurement results are done by comparing the module with a standard measurement instrument that produces the biggest % error in setting temperature of 37 ˚C which is equal to 1.21%, it is related to the boundary between water temperature and temperature setting too short which is affected by the DS18B20 temperature sensor reader that need time, to get a stable temperature reading. The minimum % error located at 60 ˚C, because to reach the temperature setting needs a long time so that DS18B20 the sensor reading is stable of setting temperature which is equal to 0.11%. The value % error of the timer is 3.4 % which the amount of the error is affected by the number of DS18B20 which is used and the delay from the microcontroller. Based on the results obtained this module can be used properly because still on the maximum limit error value less than 5%.
配备温度分布监视器的水浴设计
水浴是一种用来保持恒温的装置。本工具用于微生物学分析中的孵育。温度保持在所需的范围内。加热元件由加热器驱动器控制。该模块使用Arduino atmega328作为最小系统和时间控制器,使用PID控制器作为温度控制,并使用DS18B20传感器作为温度传感器创建。本研究的设计仅采用设计研究后的预实验方法。通过与标准测量仪的比较,得出了该模块在37℃设定温度时最大的%误差为1.21%,这与DS18B20温度传感器读取器影响水温与设定温度之间的边界太短有关,需要时间才能获得稳定的温度读数。最小%误差位于60˚C,因为要达到设定温度需要很长时间,所以DS18B20的传感器读数稳定在设定温度的0.11%。定时器的%误差值为3.4%,其误差大小受所使用的DS18B20的数量和来自单片机的延迟的影响。根据所获得的结果,该模块仍然可以正常使用,因为其最大限制误差值小于5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信