Haar Wavelet Collocation Method for Solving Riccati and Fractional Riccati Differential Equations

S. Shiralashetti, A. Deshi
{"title":"Haar Wavelet Collocation Method for Solving Riccati and Fractional Riccati Differential Equations","authors":"S. Shiralashetti, A. Deshi","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.17.46","DOIUrl":null,"url":null,"abstract":"In this paper, numerical solutions of Riccati and fractional Riccati differential equations are obtained by the Haar wavelet collocation method. An operational matrix of integration based on the Haar wavelet is established, and the procedure for applying the matrix to solve these equations. The fundamental idea of Haar wavelet method is to convert the proposed differential equations into a group of non-linear algebraic equations. The accuracy of approximate solution can be further improved by increasing the level of resolution and an error analysis is computed. The examples are given to demonstrate the fast and flexibility of the method. The results obtained are in good agreement with the exact in comparison with existing ones and it is shown that the technique introduced here is robust, easy to apply and is not only enough accurate but also quite stable.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.17.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, numerical solutions of Riccati and fractional Riccati differential equations are obtained by the Haar wavelet collocation method. An operational matrix of integration based on the Haar wavelet is established, and the procedure for applying the matrix to solve these equations. The fundamental idea of Haar wavelet method is to convert the proposed differential equations into a group of non-linear algebraic equations. The accuracy of approximate solution can be further improved by increasing the level of resolution and an error analysis is computed. The examples are given to demonstrate the fast and flexibility of the method. The results obtained are in good agreement with the exact in comparison with existing ones and it is shown that the technique introduced here is robust, easy to apply and is not only enough accurate but also quite stable.
求解Riccati和分数阶Riccati微分方程的Haar小波配点法
本文用Haar小波配点法得到了分数阶Riccati和Riccati微分方程的数值解。建立了基于哈尔小波变换的积分运算矩阵,并给出了应用该矩阵求解这些方程的步骤。Haar小波变换的基本思想是将提出的微分方程转化为一组非线性代数方程。通过提高分辨率,可以进一步提高近似解的精度,并进行了误差分析。算例说明了该方法的快速性和灵活性。结果表明,该方法鲁棒性好,易于应用,不仅具有足够的精度,而且具有较好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信