An approach for extraction of human walking path in Intelligent Space

Hiromu Kobayashi, H. Hashimoto, M. Niitsuma
{"title":"An approach for extraction of human walking path in Intelligent Space","authors":"Hiromu Kobayashi, H. Hashimoto, M. Niitsuma","doi":"10.1109/HSI.2011.5937379","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to extract human walking paths independently from the orientation of the paths in a global coordinate system. Previously, observing human walking, connectivity between the spaces (areas) has been obtained. In this paper, we regard human walking paths as a feature to represent patterns of activities. Observing and describing human activities can be considered as useful information for intelligent environments to enable the environments to provide suitable support to the users corresponding to their actual situations. In this paper, we present an approach to extract human walking paths independently from the orientation of the paths in a global coordinate system. More specifically, we propose a similarity measurement based on AMSS (Angular Metrics for Shape Similarity), then classify human walking paths using a hierarchical clustering method. Experimental results show that the proposed approach achieves rotation invariant extraction of human walking paths.","PeriodicalId":384027,"journal":{"name":"2011 4th International Conference on Human System Interactions, HSI 2011","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 4th International Conference on Human System Interactions, HSI 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2011.5937379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an approach to extract human walking paths independently from the orientation of the paths in a global coordinate system. Previously, observing human walking, connectivity between the spaces (areas) has been obtained. In this paper, we regard human walking paths as a feature to represent patterns of activities. Observing and describing human activities can be considered as useful information for intelligent environments to enable the environments to provide suitable support to the users corresponding to their actual situations. In this paper, we present an approach to extract human walking paths independently from the orientation of the paths in a global coordinate system. More specifically, we propose a similarity measurement based on AMSS (Angular Metrics for Shape Similarity), then classify human walking paths using a hierarchical clustering method. Experimental results show that the proposed approach achieves rotation invariant extraction of human walking paths.
智能空间中人类行走路径的提取方法
提出了一种在全局坐标系中独立于路径方向提取人类行走路径的方法。在此之前,通过观察人类行走,已经获得了空间(区域)之间的连通性。在本文中,我们将人类行走路径作为表征活动模式的特征。观察和描述人类活动可以被认为是智能环境的有用信息,使环境能够根据用户的实际情况为其提供合适的支持。在本文中,我们提出了一种在全局坐标系中独立于路径方向提取人类行走路径的方法。更具体地说,我们提出了基于AMSS(角度量形状相似性)的相似性度量,然后使用层次聚类方法对人类行走路径进行分类。实验结果表明,该方法实现了人体行走路径的旋转不变性提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信