Connor Huxman, G. Lewis, Gary F. Updegrove, April D. Armstrong, Jared Butler
{"title":"A COMPLIANT FRACTURE FIXATION PLATE FOR CONTROLLED AXIAL MOTION IN LONG BONE HEALING","authors":"Connor Huxman, G. Lewis, Gary F. Updegrove, April D. Armstrong, Jared Butler","doi":"10.1115/dmd2023-8517","DOIUrl":null,"url":null,"abstract":"\n In this work, we introduce a novel compliant fracture fixation plate capable of delivering controlled axial micromotion to a diaphyseal fracture. When an appropriate amount of interfragmentary strain is achieved, this micromotion is known to facilitate secondary healing by callus formation. The proposed single-piece designs leverage mechanical compliance to achieve motion, eliminating friction, wear, and detailed assembly inherent to other multi-component concepts. 3-dimensional simulations are carried out under offset axial loading. Initial finite element analysis results suggest that flexure-based compliant plates can achieve increased magnitude and symmetry of axial interfragmentary strain, even when constructed of stainless steel, a surgeon-preferred material that traditionally may be too stiff to promote callus formation.","PeriodicalId":325836,"journal":{"name":"2023 Design of Medical Devices Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design of Medical Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dmd2023-8517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we introduce a novel compliant fracture fixation plate capable of delivering controlled axial micromotion to a diaphyseal fracture. When an appropriate amount of interfragmentary strain is achieved, this micromotion is known to facilitate secondary healing by callus formation. The proposed single-piece designs leverage mechanical compliance to achieve motion, eliminating friction, wear, and detailed assembly inherent to other multi-component concepts. 3-dimensional simulations are carried out under offset axial loading. Initial finite element analysis results suggest that flexure-based compliant plates can achieve increased magnitude and symmetry of axial interfragmentary strain, even when constructed of stainless steel, a surgeon-preferred material that traditionally may be too stiff to promote callus formation.