Knowledge-based indoor positioning based on LiDAR aided multiple sensors system for UGVs

Yuwei Chen, Jingbin Liu, Antonni Jaakkola, J. Hyyppa, Liang Chen, H. Hyyppa, Tang Jian, Ruizhi Chen
{"title":"Knowledge-based indoor positioning based on LiDAR aided multiple sensors system for UGVs","authors":"Yuwei Chen, Jingbin Liu, Antonni Jaakkola, J. Hyyppa, Liang Chen, H. Hyyppa, Tang Jian, Ruizhi Chen","doi":"10.1109/PLANS.2014.6851364","DOIUrl":null,"url":null,"abstract":"In this paper, an environment knowledge-based multiple sensors indoor positioning system is designed and tested. The system integrates a LiDAR sensor, an odometer and a light sensor onto a low-cost robot platform. While, a LiDAR point-cloud-based pattern match algorithm - Iterative Closed Point (ICP) is used to estimate the relative change in heading and displacement of the platform. Based on the knowledge of the construction's structure, outdoor weather, and lighting situation, the light sensor offers an efficient parameter to improve indoor position accuracy with a light intensity fingerprint matching algorithm on low computational cost. The estimated heading and position change from LiDAR are eventually fused by Extended Kalman Filter (EKF) with those calculated from the light sensor measurement. The results prove that the spatial structure and the ambient light information in indoor environment as knowledge base can be utilized to estimate and mitigate the accumulated errors and inherent drifts of ICP algorithm. These improvements lead to longer sustainable sub meter-level indoor positioning for UGVs.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2014.6851364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, an environment knowledge-based multiple sensors indoor positioning system is designed and tested. The system integrates a LiDAR sensor, an odometer and a light sensor onto a low-cost robot platform. While, a LiDAR point-cloud-based pattern match algorithm - Iterative Closed Point (ICP) is used to estimate the relative change in heading and displacement of the platform. Based on the knowledge of the construction's structure, outdoor weather, and lighting situation, the light sensor offers an efficient parameter to improve indoor position accuracy with a light intensity fingerprint matching algorithm on low computational cost. The estimated heading and position change from LiDAR are eventually fused by Extended Kalman Filter (EKF) with those calculated from the light sensor measurement. The results prove that the spatial structure and the ambient light information in indoor environment as knowledge base can be utilized to estimate and mitigate the accumulated errors and inherent drifts of ICP algorithm. These improvements lead to longer sustainable sub meter-level indoor positioning for UGVs.
基于激光雷达辅助多传感器系统的ugv室内定位
本文设计并测试了一种基于环境知识的多传感器室内定位系统。该系统将激光雷达传感器、里程表和光传感器集成到一个低成本的机器人平台上。同时,采用基于LiDAR点云的模式匹配算法迭代闭合点(ICP)来估计平台航向和位移的相对变化。该光传感器基于建筑结构、室外天气、照明情况等信息,提供有效参数,以低计算成本的光强指纹匹配算法提高室内定位精度。最后利用扩展卡尔曼滤波(EKF)将激光雷达估计的航向和位置变化与光传感器测量结果融合。结果表明,利用空间结构和室内环境光信息作为知识库,可以有效地估计和缓解ICP算法的累积误差和固有漂移。这些改进为ugv提供了更持久的亚米级室内定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信