Distributed Chunk-Based Framework for Parallelization of Sequential Computer Vision Algorithms on Video Big-Data

Norhan Buckla, M. Rehan, H. Fahmy
{"title":"Distributed Chunk-Based Framework for Parallelization of Sequential Computer Vision Algorithms on Video Big-Data","authors":"Norhan Buckla, M. Rehan, H. Fahmy","doi":"10.1109/IEMCON.2018.8615005","DOIUrl":null,"url":null,"abstract":"In this paper we propose a complete framework that enables big-data tools to execute sequential computer vision algorithms in a scalable and parallel mechanism with limited modifications. Our main objective is to parallelize the processing operation in order to speed up the required processing time. Most of the present big-data processing frameworks distribute the input data randomly across the available processing units to utilize them efficiently and preserve working load fairness. Therefore, the current big-data frameworks are not suitable for processing huge video data content due to the existence of interframe dependency. When processing such sequential computer vision algorithms on big-data tools, splitting the video frames and distributing them on the available cores will not yield the correct output and will lead to inefficient usage of underlying processing resources. Our proposed framework divides the input big-data video files into small chunks that can be processed in parallel without affecting the quality of the resulting output. An intelligent data grouping algorithm was developed to distribute these data chunks among the available processing resources and gather the results out of each chunk using Apache Storm. The proposed framework was evaluated against several computer vision algorithms and achieved a speedup from 2.6x up to 8x based on the algorithm.","PeriodicalId":368939,"journal":{"name":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON.2018.8615005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a complete framework that enables big-data tools to execute sequential computer vision algorithms in a scalable and parallel mechanism with limited modifications. Our main objective is to parallelize the processing operation in order to speed up the required processing time. Most of the present big-data processing frameworks distribute the input data randomly across the available processing units to utilize them efficiently and preserve working load fairness. Therefore, the current big-data frameworks are not suitable for processing huge video data content due to the existence of interframe dependency. When processing such sequential computer vision algorithms on big-data tools, splitting the video frames and distributing them on the available cores will not yield the correct output and will lead to inefficient usage of underlying processing resources. Our proposed framework divides the input big-data video files into small chunks that can be processed in parallel without affecting the quality of the resulting output. An intelligent data grouping algorithm was developed to distribute these data chunks among the available processing resources and gather the results out of each chunk using Apache Storm. The proposed framework was evaluated against several computer vision algorithms and achieved a speedup from 2.6x up to 8x based on the algorithm.
基于分布式块的视频大数据并行化顺序计算机视觉算法框架
在本文中,我们提出了一个完整的框架,使大数据工具能够在有限的修改下以可扩展和并行的机制执行顺序计算机视觉算法。我们的主要目标是并行化处理操作,以加快所需的处理时间。目前大多数大数据处理框架将输入数据随机分布在可用的处理单元上,以有效地利用它们并保持工作负载的公平性。因此,由于帧间依赖的存在,目前的大数据框架并不适合处理庞大的视频数据内容。当在大数据工具上处理这种顺序计算机视觉算法时,拆分视频帧并将其分配到可用的内核上,将无法产生正确的输出,并且会导致底层处理资源的低效使用。我们提出的框架将输入的大数据视频文件分成小块,这些小块可以并行处理,而不会影响最终输出的质量。开发了一种智能数据分组算法,将这些数据块分布在可用的处理资源中,并使用Apache Storm收集每个数据块的结果。将该框架与几种计算机视觉算法进行了对比,结果表明,该框架的加速速度从2.6倍提高到8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信