Detecting Arbitrary-oriented Objects in Remote Sensing Imagery with Segmentation-Aware Mask

Jiali Wei, Bo Hua, Fei Gao, Huan Zhang, Jiangwei Fan, Shuran Zhang
{"title":"Detecting Arbitrary-oriented Objects in Remote Sensing Imagery with Segmentation-Aware Mask","authors":"Jiali Wei, Bo Hua, Fei Gao, Huan Zhang, Jiangwei Fan, Shuran Zhang","doi":"10.1145/3590003.3590032","DOIUrl":null,"url":null,"abstract":"Arbitrary-Oriented object detection in remote sensing images is a hot topic in recent years. Currently, most arbitrary-oriented object detectors adopt the oriented bounding box (OBB) to represent targets in remote sensing imagery. However, OBB representation suffers from suboptimal regression problems caused by the ambiguity of the angle definition. In this paper, we propose a novel framework to Learning Segmentation-aware Mask for arbitrary-oriented object Detection (LSM-Det) in remote sensing imagery. LSM-Det predicts the mask of the object, and then converts the mask prediction into a minimum external OBB to achieve arbitrary-oriented object detection. Moreover, we designed a segmentation-aware branch to select high-quality predictions via the output matching score. Our method achieves superior performance on multiple remote sensing datasets. Code and models are available to facilitate related research.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arbitrary-Oriented object detection in remote sensing images is a hot topic in recent years. Currently, most arbitrary-oriented object detectors adopt the oriented bounding box (OBB) to represent targets in remote sensing imagery. However, OBB representation suffers from suboptimal regression problems caused by the ambiguity of the angle definition. In this paper, we propose a novel framework to Learning Segmentation-aware Mask for arbitrary-oriented object Detection (LSM-Det) in remote sensing imagery. LSM-Det predicts the mask of the object, and then converts the mask prediction into a minimum external OBB to achieve arbitrary-oriented object detection. Moreover, we designed a segmentation-aware branch to select high-quality predictions via the output matching score. Our method achieves superior performance on multiple remote sensing datasets. Code and models are available to facilitate related research.
基于分割感知掩模的遥感图像任意方向目标检测
面向任意目标的遥感图像检测是近年来研究的热点。目前,遥感图像中的任意方向目标检测器大多采用定向边界框(OBB)来表示目标。然而,OBB表示存在由于角度定义不明确而导致的次优回归问题。在本文中,我们提出了一种新的框架来学习用于遥感图像中任意目标检测(LSM-Det)的分割感知掩码。LSM-Det预测目标的掩码,然后将掩码预测转化为最小的外部OBB,实现任意方向的目标检测。此外,我们设计了一个分割感知分支,通过输出匹配分数来选择高质量的预测。该方法在多遥感数据集上具有优异的性能。代码和模型可用于促进相关研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信