Recurrence techniques for the calculation of bessel functions

ACM '59 Pub Date : 1959-05-01 DOI:10.1145/612201.612280
M. Goldstein, R. Thaler
{"title":"Recurrence techniques for the calculation of bessel functions","authors":"M. Goldstein, R. Thaler","doi":"10.1145/612201.612280","DOIUrl":null,"url":null,"abstract":"where Fv(x) may be either J,(x) or Y,(x). If one is given Y,(x) and Yv+?(x) then Eq. (1) may be used to generate the functions Yv+,(x). For ? >> (x/2) the function Y,(x) increases extremely rapidly with increasing order, i.e., Y,(x) -(2,u/x) and the functions Y,+n(x) calculated from Eq. (1) yield good accuracy for large n. However, if one is given JA(x) and J,+? (x), Eq. (1) gives poor accuracy for Jv+n(x), since for ? >> (x/2), J,(x) -(2l/x)->. On the other hand, if one is given Jv+n(x) and Jv+n+l(x), where n >> (x/2), then one may again recur without loss of accuracy but this time in the direction of decreasing order. We shall first treat the problem of using the recurrence technique in the calculation of the regular Bessel function Jv+n(x). Thus, let us find Jv+n(x), for 0 < v < 1 and n < N.","PeriodicalId":109454,"journal":{"name":"ACM '59","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1959-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '59","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/612201.612280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

where Fv(x) may be either J,(x) or Y,(x). If one is given Y,(x) and Yv+?(x) then Eq. (1) may be used to generate the functions Yv+,(x). For ? >> (x/2) the function Y,(x) increases extremely rapidly with increasing order, i.e., Y,(x) -(2,u/x) and the functions Y,+n(x) calculated from Eq. (1) yield good accuracy for large n. However, if one is given JA(x) and J,+? (x), Eq. (1) gives poor accuracy for Jv+n(x), since for ? >> (x/2), J,(x) -(2l/x)->. On the other hand, if one is given Jv+n(x) and Jv+n+l(x), where n >> (x/2), then one may again recur without loss of accuracy but this time in the direction of decreasing order. We shall first treat the problem of using the recurrence technique in the calculation of the regular Bessel function Jv+n(x). Thus, let us find Jv+n(x), for 0 < v < 1 and n < N.
计算贝塞尔函数的递归技术
其中Fv(x)可以是J,(x)或Y,(x)。如果给定Y,(x)和Yv+?(x),则Eq.(1)可用于生成函数Yv+,(x)。用的?>> (x/2),函数Y,(x)随着阶数的增加而迅速增加,即Y,(x) -(2,u/x)和从式(1)计算出的函数Y,+n(x)对于较大的n具有很好的精度。然而,如果给定JA(x)和J,+?(x),式(1)给出Jv+n(x)的精度较差,因为对于?>> (x/2), J,(x) -(2l/x)->另一方面,如果给定Jv+n(x)和Jv+n+l(x),其中n >> (x/2),则可以在不损失精度的情况下再次出现,但这一次是在递减顺序的方向上。我们将首先处理在计算正则贝塞尔函数Jv+n(x)时使用递归技术的问题。因此,让我们找出Jv+n(x),对于0 < v < 1和n < n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信