An optimal eighth-order multipoint numerical iterative method to find simple root of scalar nonlinear equations

M. Z. Ullah
{"title":"An optimal eighth-order multipoint numerical iterative method to find simple root of\nscalar nonlinear equations","authors":"M. Z. Ullah","doi":"10.52280/pujm.2022.541103","DOIUrl":null,"url":null,"abstract":"An optimal eighth-order multipoint numerical iterative method is constructed to find the\nsimple root of scalar nonlinear equations. It is a three-point numerical iterative method that uses three evaluations of func-tion f(¢) associated with a scalar nonlinear equation and one of its deriv-atives f0 (¢). The four functional evaluations are required to achieve the eighth-order convergence. According to Kung-Traub conjecture (KTC), an iterative numerical multipoint method without memory can achieve maximum order of convergence 2n¡1 where n is the total number of func-tion evaluations in a single instance of the method. Therefore, following the KTC, the proposed method in this article is\noptimal.","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2022.541103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An optimal eighth-order multipoint numerical iterative method is constructed to find the simple root of scalar nonlinear equations. It is a three-point numerical iterative method that uses three evaluations of func-tion f(¢) associated with a scalar nonlinear equation and one of its deriv-atives f0 (¢). The four functional evaluations are required to achieve the eighth-order convergence. According to Kung-Traub conjecture (KTC), an iterative numerical multipoint method without memory can achieve maximum order of convergence 2n¡1 where n is the total number of func-tion evaluations in a single instance of the method. Therefore, following the KTC, the proposed method in this article is optimal.
求标量非线性方程单根的最优八阶多点数值迭代法
构造了求标量非线性方程单根的最优八阶多点数值迭代方法。它是一种三点数值迭代法,使用与标量非线性方程及其导数之一f0(ⅱ)相关的函数f(ⅱ)的三次求值。这四个功能评价是实现八阶收敛所必需的。根据Kung-Traub猜想(KTC),无内存迭代数值多点方法的最大收敛阶数为2n±1,其中n为该方法在单个实例中函数求值的总次数。因此,遵循KTC,本文提出的方法是不优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信