Histogram of confidences for person detection

L. Middleton, James R. Snowdon
{"title":"Histogram of confidences for person detection","authors":"L. Middleton, James R. Snowdon","doi":"10.1109/ICIP.2010.5649809","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of person detection in harsh industrial environments. Different image regions often have different requirements for the person to be detected. Additionally, as the environment can change on a frame to frame basis even previously detected people can fail to be found. In our work we adapt a previously trained classifier to improve its performance in the industrial environment. The classifier output is initially used an image descriptor. Structure from the descriptor history is learned using semi-supervised learning to boost overall performance. In comparison with two state of the art person detectors we see gains of 10%. Our approach is generally applicable to pretrained classifiers which can then be specialised for a specific scene.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5649809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper focuses on the problem of person detection in harsh industrial environments. Different image regions often have different requirements for the person to be detected. Additionally, as the environment can change on a frame to frame basis even previously detected people can fail to be found. In our work we adapt a previously trained classifier to improve its performance in the industrial environment. The classifier output is initially used an image descriptor. Structure from the descriptor history is learned using semi-supervised learning to boost overall performance. In comparison with two state of the art person detectors we see gains of 10%. Our approach is generally applicable to pretrained classifiers which can then be specialised for a specific scene.
人检测的置信直方图
本文主要研究恶劣工业环境下的人员检测问题。不同的图像区域往往对被检测的人有不同的要求。此外,由于环境可以在一帧到另一帧的基础上变化,即使先前检测到的人也可能无法被发现。在我们的工作中,我们调整了先前训练过的分类器,以提高其在工业环境中的性能。分类器输出最初用于图像描述符。从描述符历史中学习结构,使用半监督学习来提高整体性能。与两种最先进的人体探测器相比,我们看到了10%的收益。我们的方法通常适用于预训练的分类器,然后可以针对特定的场景进行专门的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信