{"title":"Existence and local behavior of general cubic Hermite-Padé Approximation","authors":"Li Jin","doi":"10.1109/CINC.2010.5643818","DOIUrl":null,"url":null,"abstract":"This paper analyses the local behavior of the general cubic function approximation to a function which has a given power series expansion about the origin. It is shown that the general cubic Hermite-Padé form always defines a cubic function and that this function is analytic in a neighbourhood of the origin. This result holds even if the origin is a critical point of the function (i.e., the discriminant has a zero at the origin).","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper analyses the local behavior of the general cubic function approximation to a function which has a given power series expansion about the origin. It is shown that the general cubic Hermite-Padé form always defines a cubic function and that this function is analytic in a neighbourhood of the origin. This result holds even if the origin is a critical point of the function (i.e., the discriminant has a zero at the origin).