Prediction and model-assisted estimation of diameter distributions using Norwegian national forest inventory and airborne laser scanning data

Janne Raty, R. Astrup, J. Breidenbach
{"title":"Prediction and model-assisted estimation of diameter distributions using Norwegian national forest inventory and airborne laser scanning data","authors":"Janne Raty, R. Astrup, J. Breidenbach","doi":"10.1139/CJFR-2020-0440","DOIUrl":null,"url":null,"abstract":"Diameter at breast height (DBH) distributions offer valuable information for operational and strategic forest management decisions. We predicted DBH distributions using Norwegian national forest inventory and airborne laser scanning data in an 8.7 Mha study area and compared the predictive performance of parameter prediction methods using linear-mixed effects (PPM) and generalized linear-mixed models (GLM), and a k nearest neighbor (NN) approach. With PPM and GLM, it was assumed that the data follow a truncated Weibull distribution. While GLM resulted in slightly smaller errors than PPM, both were clearly outperformed by NN. We applied NN to study the variance of model-assisted (MA) estimates of the DBH distribution in the whole study area. The MA estimator yielded greater than or almost equal efficiencies as the direct estimator in the 2 cm DBH classes (6, 8,..., 50 cm) where relative efficiencies (REs) varied in the range of 0.97$-$1.63. RE was largest in the DBH classes $\\leq$ 10 cm and decreased towards the right tail of the distribution. A forest mask and tree species map introduced further uncertainty beyond the DBH distribution model, which reduced REs to 0.97$-$1.50.","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/CJFR-2020-0440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Diameter at breast height (DBH) distributions offer valuable information for operational and strategic forest management decisions. We predicted DBH distributions using Norwegian national forest inventory and airborne laser scanning data in an 8.7 Mha study area and compared the predictive performance of parameter prediction methods using linear-mixed effects (PPM) and generalized linear-mixed models (GLM), and a k nearest neighbor (NN) approach. With PPM and GLM, it was assumed that the data follow a truncated Weibull distribution. While GLM resulted in slightly smaller errors than PPM, both were clearly outperformed by NN. We applied NN to study the variance of model-assisted (MA) estimates of the DBH distribution in the whole study area. The MA estimator yielded greater than or almost equal efficiencies as the direct estimator in the 2 cm DBH classes (6, 8,..., 50 cm) where relative efficiencies (REs) varied in the range of 0.97$-$1.63. RE was largest in the DBH classes $\leq$ 10 cm and decreased towards the right tail of the distribution. A forest mask and tree species map introduced further uncertainty beyond the DBH distribution model, which reduced REs to 0.97$-$1.50.
利用挪威国家森林清查和机载激光扫描数据对直径分布进行预测和模型辅助估计
胸径分布为森林经营决策和战略决策提供了有价值的信息。在8.7 Mha的研究区域内,利用挪威国家森林清调查和航空激光扫描数据预测了胸径分布,并比较了线性混合效应(PPM)、广义线性混合模型(GLM)和k最近邻(NN)方法参数预测方法的预测性能。对于PPM和GLM,假设数据遵循截断威布尔分布。虽然GLM产生的误差略小于PPM,但两者都明显优于NN。应用神经网络对整个研究区胸径分布的模型辅助估计方差进行了研究。在2 cm DBH等级(6,8,…)中,MA估计器的效率大于或几乎等于直接估计器。, 50 cm),相对效率(REs)在0.97 $-$ 1.63的范围内变化。RE在DBH类$\leq$ 10 cm处最大,向分布的右尾部减小。森林掩膜和树种图在胸径分布模型之外引入了进一步的不确定性,使REs降至0.97 $-$ 1.50。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信