Computational Refinements for Post-Quantum Elliptic Curve Security

E. Sakk
{"title":"Computational Refinements for Post-Quantum Elliptic Curve Security","authors":"E. Sakk","doi":"10.1109/CSP55486.2022.00014","DOIUrl":null,"url":null,"abstract":"Computer security in a post-quantum world is a topic of great significance. The security of a vast number of public key encryption and key distribution techniques is dependent upon various number theoretic frameworks such as factoring, discrete logarithms and elliptic curves. Yet, variations on Shor’s algorithm have provided a theoretical basis for rendering such systems vulnerable to quantum attacks. In this work, we review quantum solutions for typical number theoretic problems. After leading up to elliptic curve systems, we highlight the relevance of computing modular inverses. Finally, refinements to quantum versions of the extended Euclidean algorithm are presented.","PeriodicalId":187713,"journal":{"name":"2022 6th International Conference on Cryptography, Security and Privacy (CSP)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Cryptography, Security and Privacy (CSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSP55486.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computer security in a post-quantum world is a topic of great significance. The security of a vast number of public key encryption and key distribution techniques is dependent upon various number theoretic frameworks such as factoring, discrete logarithms and elliptic curves. Yet, variations on Shor’s algorithm have provided a theoretical basis for rendering such systems vulnerable to quantum attacks. In this work, we review quantum solutions for typical number theoretic problems. After leading up to elliptic curve systems, we highlight the relevance of computing modular inverses. Finally, refinements to quantum versions of the extended Euclidean algorithm are presented.
后量子椭圆曲线安全性的计算改进
后量子世界中的计算机安全是一个具有重要意义的课题。大量公钥加密和密钥分发技术的安全性依赖于各种数论框架,如因式分解、离散对数和椭圆曲线。然而,肖尔算法的变体为使这种系统容易受到量子攻击提供了理论基础。在这项工作中,我们回顾了典型数论问题的量子解。在引导到椭圆曲线系统之后,我们强调了计算模逆的相关性。最后,对扩展欧几里得算法的量子版本进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信