{"title":"Hidden Markov Model-Based Asthmatic Wheeze Recognition Algorithm Leveraging the Parallel Ultra-Low-Power Processor (PULP)","authors":"D. Oletić, Marko Matijascic, V. Bilas, M. Magno","doi":"10.1109/SAS.2019.8706033","DOIUrl":null,"url":null,"abstract":"Asthmatic symptoms can be quantified by a wearable sensor system, recording respiratory sounds on patient’s skin surface, and performing automated asthmatic wheeze recognition based on time-frequency features. In order to enable long-term autonomy of such sensor system, a crucial design requirement is ensuring energy-efficient yet accurate wheeze recognition performance. We presented a Hidden Markov Model-based algorithm for recognition of wheezing intervals durations, by sequentially extracting individual wheezing-frequency lines from the spectrogram of respiratory sounds. In this paper we compare its implementation on an ARM Cortex-M4 processor and an emerging parallel ultra-low-power processing platform PULP Fulmine. It is shown that the algorithm enables wheeze recognition with 82.85% of sensitivity and 95.61% specificity, for only 0.9-1.6 mW of power. It is experimentally verified that algorithm benefits from a multi-core architectures such as PULP Fulmine. The implementation on this platform brings up to around 40% reduction of average power spent on processing, compared to the ARM Cortex-M4 Blue Gecko.","PeriodicalId":360234,"journal":{"name":"2019 IEEE Sensors Applications Symposium (SAS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2019.8706033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Asthmatic symptoms can be quantified by a wearable sensor system, recording respiratory sounds on patient’s skin surface, and performing automated asthmatic wheeze recognition based on time-frequency features. In order to enable long-term autonomy of such sensor system, a crucial design requirement is ensuring energy-efficient yet accurate wheeze recognition performance. We presented a Hidden Markov Model-based algorithm for recognition of wheezing intervals durations, by sequentially extracting individual wheezing-frequency lines from the spectrogram of respiratory sounds. In this paper we compare its implementation on an ARM Cortex-M4 processor and an emerging parallel ultra-low-power processing platform PULP Fulmine. It is shown that the algorithm enables wheeze recognition with 82.85% of sensitivity and 95.61% specificity, for only 0.9-1.6 mW of power. It is experimentally verified that algorithm benefits from a multi-core architectures such as PULP Fulmine. The implementation on this platform brings up to around 40% reduction of average power spent on processing, compared to the ARM Cortex-M4 Blue Gecko.