Analyzing unstructured data: text analytics in JMP

Volker Kraft
{"title":"Analyzing unstructured data: text analytics in JMP","authors":"Volker Kraft","doi":"10.52041/srap.17204","DOIUrl":null,"url":null,"abstract":"As much as 80% of all data is unstructured but still has exploitable information available. For example, unstructured text data could result from comment fields in surveys or incident reports. You want to explore this unstructured text to better understand the information that it contains. Text Mining, based on a transformation of free text into numerical summaries, can pave the way for new findings. This example of the new text mining feature in JMP starts with a multi-step text preparation using techniques like stemming and tokenizing. This data curation is pivotal for the subsequent analysis phase, exploring data clusters and semantics. Finally, combining text mining results with other structured data takes familiar multivariate analysis and predictive modeling to a next level.","PeriodicalId":421900,"journal":{"name":"Teaching Statistics in a Data Rich World IASE Satellite Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teaching Statistics in a Data Rich World IASE Satellite Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52041/srap.17204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As much as 80% of all data is unstructured but still has exploitable information available. For example, unstructured text data could result from comment fields in surveys or incident reports. You want to explore this unstructured text to better understand the information that it contains. Text Mining, based on a transformation of free text into numerical summaries, can pave the way for new findings. This example of the new text mining feature in JMP starts with a multi-step text preparation using techniques like stemming and tokenizing. This data curation is pivotal for the subsequent analysis phase, exploring data clusters and semantics. Finally, combining text mining results with other structured data takes familiar multivariate analysis and predictive modeling to a next level.
分析非结构化数据:JMP中的文本分析
多达80%的数据是非结构化的,但仍然有可利用的信息。例如,非结构化文本数据可能来自调查或事件报告中的评论字段。您希望探究这个非结构化文本,以便更好地理解其中包含的信息。基于将自由文本转换为数字摘要的文本挖掘可以为新的发现铺平道路。这个JMP中新的文本挖掘特性的示例从使用词干提取和标记化等技术的多步骤文本准备开始。这种数据管理对于后续的分析阶段(探索数据集群和语义)至关重要。最后,将文本挖掘结果与其他结构化数据相结合,将熟悉的多变量分析和预测建模提升到一个新的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信