Analysis of a Hypertorus Grid

T. Shmeleva
{"title":"Analysis of a Hypertorus Grid","authors":"T. Shmeleva","doi":"10.1109/ELNANO.2018.8477554","DOIUrl":null,"url":null,"abstract":"Abstract structures of torus and hypertorus play a key role in nanotechnologies and are widely applied in nanotechnology for design of electronic devices and components. For modeling hypertorus structures, an infinite Petri net model has been developed and investigated. Based on the parametric specification of hypertorus models, an infinite system of linear homogenous equations has been derived. Using the earlier developed ad-hoc algorithm, a parametric solution of the system has been obtained. We can compose, in an explicit form, a solution that contains all the positive components. Thus, the model is a p-invariant Petri net for any given size and number of dimensions of hypertorus. Consequently, we can use storage elements of limited capacity for practical implementations of a hypertorus structure.","PeriodicalId":269665,"journal":{"name":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO.2018.8477554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract structures of torus and hypertorus play a key role in nanotechnologies and are widely applied in nanotechnology for design of electronic devices and components. For modeling hypertorus structures, an infinite Petri net model has been developed and investigated. Based on the parametric specification of hypertorus models, an infinite system of linear homogenous equations has been derived. Using the earlier developed ad-hoc algorithm, a parametric solution of the system has been obtained. We can compose, in an explicit form, a solution that contains all the positive components. Thus, the model is a p-invariant Petri net for any given size and number of dimensions of hypertorus. Consequently, we can use storage elements of limited capacity for practical implementations of a hypertorus structure.
超环面网格的分析
摘要环面和超环面结构在纳米技术中起着至关重要的作用,在电子器件和元件的纳米技术设计中有着广泛的应用。对于超环体结构的建模,提出并研究了无限Petri网模型。在超环面模型参数化的基础上,导出了一个无限线性齐次方程组。利用先前开发的ad-hoc算法,得到了系统的参数解。我们可以用显式的形式,写出一个包含所有正分量的解。因此,对于任何给定的超环面尺寸和维数,该模型都是一个p不变的Petri网。因此,我们可以在超环面结构的实际实现中使用有限容量的存储单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信