Segmentierungs- und Annotationsverfahren für die Texte Udo Lindenbergs: Apostrophe und andere Herausforderungen

Gertrud Faaß, Helmut Schmid
{"title":"Segmentierungs- und Annotationsverfahren für die Texte Udo Lindenbergs: Apostrophe und andere Herausforderungen","authors":"Gertrud Faaß, Helmut Schmid","doi":"10.21248/jlcl.36.2023.241","DOIUrl":null,"url":null,"abstract":"In der Computerlinguistik ist eine kaskadische Prozessierung von Texten üblich. Dabei werden diese zuerst segmentiert (tokenisiert), d.h. Tokens und ggf. Satzgrenzen werden erkannt. Dabei entsteht meist eine Liste bzw. eine einspaltige Tabelle, die sukzessive durch weitere Prozessierungschritte um zusätzliche Spalten – also positionale Annotationen wie z.B. Wortarten und Lemmata für die Tokens in der ersten Spalte – ergänzt wird. Bei der Tokenisierung werden alle Spatien (Leerzeichen) gelöscht. Schon immer problematisch waren dabei Interpunktionszeichen, da diese äußerst ambig sein können, aber auch mehrteilige Namen, die Leerzeichen enthalten und eigentlich zusammengehören. Dieser Beitrag fokussiert auf den Apostroph, der in vielfältiger Weise in den Texten Udo Lindenbergs eingesetzt wird sowie auf mehrteilige Namen, die wir als Tokens erhalten möchten. Wir nutzen dafür das komplette Lindenberg-Archiv des songkorpus.de-Repositoriums, kategorisieren die auftretenden Phänomene, erstellen einen Goldstandard und entwickeln ein teils regel-, teils auf maschinellem Lernen basierendes Segmentierungswerkzeug, das insbesondere die auftretenden Apostrophe, aber auch - lexikonbasiert - mehrteilige Namen nach unseren Vorstellungen erkennt und tokenisiert. Im Anschluss trainieren wir den RNN-Tagger (Schmid, 2019) und zeigen auf, dass ein spezifisch für diese Texte angepasstes Training zu Genauigkeiten ≥ 96% führt. Dabei entsteht nicht nur ein Goldstandard des annotierten Korpus, das dem Songkorpus-Repositorium zur Verfügung gestellt wird, sondern auch eine angepasste Version des RNN-Taggers (verfügbar auf github), die für ähnliche Texte verwendet werden kann.","PeriodicalId":137584,"journal":{"name":"Journal for Language Technology and Computational Linguistics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Language Technology and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.36.2023.241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In der Computerlinguistik ist eine kaskadische Prozessierung von Texten üblich. Dabei werden diese zuerst segmentiert (tokenisiert), d.h. Tokens und ggf. Satzgrenzen werden erkannt. Dabei entsteht meist eine Liste bzw. eine einspaltige Tabelle, die sukzessive durch weitere Prozessierungschritte um zusätzliche Spalten – also positionale Annotationen wie z.B. Wortarten und Lemmata für die Tokens in der ersten Spalte – ergänzt wird. Bei der Tokenisierung werden alle Spatien (Leerzeichen) gelöscht. Schon immer problematisch waren dabei Interpunktionszeichen, da diese äußerst ambig sein können, aber auch mehrteilige Namen, die Leerzeichen enthalten und eigentlich zusammengehören. Dieser Beitrag fokussiert auf den Apostroph, der in vielfältiger Weise in den Texten Udo Lindenbergs eingesetzt wird sowie auf mehrteilige Namen, die wir als Tokens erhalten möchten. Wir nutzen dafür das komplette Lindenberg-Archiv des songkorpus.de-Repositoriums, kategorisieren die auftretenden Phänomene, erstellen einen Goldstandard und entwickeln ein teils regel-, teils auf maschinellem Lernen basierendes Segmentierungswerkzeug, das insbesondere die auftretenden Apostrophe, aber auch - lexikonbasiert - mehrteilige Namen nach unseren Vorstellungen erkennt und tokenisiert. Im Anschluss trainieren wir den RNN-Tagger (Schmid, 2019) und zeigen auf, dass ein spezifisch für diese Texte angepasstes Training zu Genauigkeiten ≥ 96% führt. Dabei entsteht nicht nur ein Goldstandard des annotierten Korpus, das dem Songkorpus-Repositorium zur Verfügung gestellt wird, sondern auch eine angepasste Version des RNN-Taggers (verfügbar auf github), die für ähnliche Texte verwendet werden kann.
维多·林登伯格经文的四种译法:“启示录和其他挑战”
在计算机语言学中,写作通常是阶段性的过程。先因人而同也就是Tokens和条件适宜。如"句句属实"大体而言应该出现一个列表或排行表,以逐步增加多个栏——就是第一列中对于托克的形容词和列玛塔。发牌会删除所有麻雀(空格)。标点符号经常会出现问题,因为这些标点可能是有害的,还有多个字母,包括空格。这些字母属于同一个整体。本文集中讨论“乌多·林登伯格(Udo lindenberg)”里的启示录,以及我们希望成为图腾的多个名字。我们要抓住这个完整的Lindenberg-Archiv songkorpus.de-Repositoriums分类发生的现象是有金本位,编写和制定一个规则,部分基于maschinellem学习Segmentierungswerkzeug尤其支持这方面Apostrophe lexikonbasiert——mehrteilige姓名也按照以往的概念和认识到tokenisiert .RNN-Tagger后练功食(Schmid表示,2019年)和上显示,上述案文的针对性的训练中发生≥96%导致.要获得这部分rna重组版(可以在github上进行)的金本位,而不论所提供的曲目序列或是经rna分类而可以用在类似文本上的重组版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信