A Survey of Attacks and Defenses for Deep Neural Networks

Daniel Machooka, Xiaohong Yuan, A. Esterline
{"title":"A Survey of Attacks and Defenses for Deep Neural Networks","authors":"Daniel Machooka, Xiaohong Yuan, A. Esterline","doi":"10.1109/CSR57506.2023.10224947","DOIUrl":null,"url":null,"abstract":"This survey provides an overview of adversarial attacks and defenses for deep neural networks. We discuss the taxonomies of attacks on Machine learning systems and common algorithms for generating attacks. We also present a taxonomy of defense techniques for adversarial machine learning. Using the information in this paper, researchers can make an informed decision on creating secure models in machine learning. Based on the reviewed literature, we foresee promising paths for future research.","PeriodicalId":354918,"journal":{"name":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR57506.2023.10224947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This survey provides an overview of adversarial attacks and defenses for deep neural networks. We discuss the taxonomies of attacks on Machine learning systems and common algorithms for generating attacks. We also present a taxonomy of defense techniques for adversarial machine learning. Using the information in this paper, researchers can make an informed decision on creating secure models in machine learning. Based on the reviewed literature, we foresee promising paths for future research.
深度神经网络攻击与防御综述
本文概述了深度神经网络的对抗性攻击和防御。我们讨论了针对机器学习系统的攻击分类以及生成攻击的常用算法。我们还提出了对抗性机器学习防御技术的分类。利用本文中的信息,研究人员可以在机器学习中创建安全模型时做出明智的决定。在回顾文献的基础上,我们展望了未来研究的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信