Coarse-Grained Parallel Uniformization for Continuous-Time Markov Chains

H. Okamura, Y. Kunimoto, T. Dohi
{"title":"Coarse-Grained Parallel Uniformization for Continuous-Time Markov Chains","authors":"H. Okamura, Y. Kunimoto, T. Dohi","doi":"10.1109/PRDC.2014.22","DOIUrl":null,"url":null,"abstract":"This paper discusses parallel algorithms for transient analysis of continuous-time Markov chains (CTMCs). In dependable computing, it is used for evaluating the rare events such as failure based on CTMC models. The uniformizaton is a well-known algorithm for obtaining the transient solution of CTMC. However, the computation cost of uniformization is not low in the case of large-sized and stiff CTMCs. This paper considers parallelization of the uniformization algorithm. Particularly, we propose a coarse-grained parallel uniformization which is appropriate for multicore processors. This method enables us to analyze the large-sized and stiff CTMCs efficiently. In numerical examples, we examine the effectiveness of the proposed parallel algorithms with multicore processors.","PeriodicalId":187000,"journal":{"name":"2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses parallel algorithms for transient analysis of continuous-time Markov chains (CTMCs). In dependable computing, it is used for evaluating the rare events such as failure based on CTMC models. The uniformizaton is a well-known algorithm for obtaining the transient solution of CTMC. However, the computation cost of uniformization is not low in the case of large-sized and stiff CTMCs. This paper considers parallelization of the uniformization algorithm. Particularly, we propose a coarse-grained parallel uniformization which is appropriate for multicore processors. This method enables us to analyze the large-sized and stiff CTMCs efficiently. In numerical examples, we examine the effectiveness of the proposed parallel algorithms with multicore processors.
连续时间马尔可夫链的粗粒度并行均匀化
本文讨论了连续时间马尔可夫链暂态分析的并行算法。在可靠计算中,基于CTMC模型对故障等罕见事件进行评估。均匀化算法是求解CTMC暂态解的一种著名算法。然而,对于大型刚性ctmc,均匀化的计算成本并不低。本文考虑了均匀化算法的并行化问题。特别地,我们提出了一种适合多核处理器的粗粒度并行统一。该方法可以有效地分析大型刚性ctmc。在数值例子中,我们检验了所提出的多核并行算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信