Joint statistical analysis of images and keywords with applications in semantic image enhancement

Albrecht J. Lindner, Appu Shaji, Nicolas Bonnier, S. Süsstrunk
{"title":"Joint statistical analysis of images and keywords with applications in semantic image enhancement","authors":"Albrecht J. Lindner, Appu Shaji, Nicolas Bonnier, S. Süsstrunk","doi":"10.1145/2393347.2393417","DOIUrl":null,"url":null,"abstract":"With the advent of social image-sharing communities, millions of images with associated semantic tags are now available online for free and allow us to exploit this abundant data in new ways. We present a fast non-parametric statistical framework designed to analyze a large data corpus of images and semantic tag pairs and find correspondences between image characteristics and semantic concepts. We learn the relevance of different image characteristics for thousands of keywords from one million annotated images. We demonstrate the framework's effectiveness with three different examples of semantic image enhancement: we adapt the gray-level tone-mapping, emphasize semantically relevant colors, and perform a defocus magnification for an image based on its semantic context. The performance of our algorithms is validated with psychophysical experiments.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"38 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2393417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

With the advent of social image-sharing communities, millions of images with associated semantic tags are now available online for free and allow us to exploit this abundant data in new ways. We present a fast non-parametric statistical framework designed to analyze a large data corpus of images and semantic tag pairs and find correspondences between image characteristics and semantic concepts. We learn the relevance of different image characteristics for thousands of keywords from one million annotated images. We demonstrate the framework's effectiveness with three different examples of semantic image enhancement: we adapt the gray-level tone-mapping, emphasize semantically relevant colors, and perform a defocus magnification for an image based on its semantic context. The performance of our algorithms is validated with psychophysical experiments.
图像与关键词的联合统计分析及其在语义图像增强中的应用
随着社交图像共享社区的出现,数百万带有相关语义标签的图像现在可以免费在线获取,并允许我们以新的方式利用这些丰富的数据。我们提出了一个快速的非参数统计框架,用于分析图像和语义标签对的大数据语料库,并找到图像特征与语义概念之间的对应关系。我们从一百万张标注图像中学习数千个关键词的不同图像特征的相关性。我们通过三个不同的语义图像增强示例证明了该框架的有效性:我们调整灰度级色调映射,强调语义相关的颜色,并基于其语义上下文对图像执行散焦放大。通过心理物理实验验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信